期刊文献+
共找到406篇文章
< 1 2 21 >
每页显示 20 50 100
Hydrangea serrata extract exerts tumor inhibitory activity against hepatocellular carcinoma HepG2 cells via inducing p27/CDK2-mediated cell cycle arrest and apoptosis
1
作者 Ye-eun Kim Jeonghye Hwang Ki-Young Kim 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2024年第2期65-72,I0002-I0005,共12页
Objective:To examine the inhibitory effect of Hydrangea serrata extract against hepatocellular carcinoma HepG2 cells and its underlying mechanisms.Methods:The effects of Hydrangea serrata extract on growth inhibition ... Objective:To examine the inhibitory effect of Hydrangea serrata extract against hepatocellular carcinoma HepG2 cells and its underlying mechanisms.Methods:The effects of Hydrangea serrata extract on growth inhibition of tumor cells and spheroids were assessed using MTT and 3D culture assays.Quantitative real-time PCR and Western blot analyses were employed to investigate the changes in mRNA and protein expression levels of molecules related to cell cycle and apoptosis.Results:Hydrangea serrata extract effectively inhibited the growth of both tumor cells and spheroids.The extract also significantly upregulated p27 mRNA expression and downregulated CDK2 mRNA expression,leading to cell cycle arrest.Moreover,increased BAX/Bcl-2 ratio as well as caspase-9 and-3 were observed after treatment with Hydrangea serrata extract,indicating the induction of tumor cell apoptosis.Conclusions:Hydrangea serrata extract has the potential to alleviate tumors by effectively modulating cell-cycle-related gene expressions and inducing apoptosis,thereby inhibiting tumor growth. 展开更多
关键词 Hydrangea serrata Hepatocellular carcinoma Liver cancer Anticancer cell cycle arrest APOPTOSIS
下载PDF
Cdk5 and aberrant cell cycle activation at the core of neurodegeneration 被引量:3
2
作者 Raquel Requejo-Aguilar 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第6期1186-1190,共5页
Neurodegenerative diseases are caused by the progressive loss of specific neurons.The exact mechanisms of action of these diseases are unknown,and many studies have focused on pathways related to abnormal accumulation... Neurodegenerative diseases are caused by the progressive loss of specific neurons.The exact mechanisms of action of these diseases are unknown,and many studies have focused on pathways related to abnormal accumulation and processing of proteins,mitochondrial dysfunction,and oxidative stress leading to apoptotic death.However,a growing body of evidence indicates that aberrant cell cycle re-entry plays a major role in the pathogenesis of neurodegeneration.The activation of the cell cycle in mature neurons could be promoted by several signaling mechanisms,including c-Jun N-terminal kinases,p38 mitogen-activated protein kinases,and mitogen-activated protein kinase/extracellular signal-regulated kinase cascades;post-translational modifications such as Tau-phosphorylation;and DNA damage response.In all these events,implicated Cdk5,a proline-directed serine/threonine protein kinase,seems to be responsible for several cellular processes in neurons including axon growth,neurotransmission,synaptic plasticity,neuronal migration,and maintenance of neuronal survival.However,under pathological conditions,Cdk5 dysregulation may lead to cell cycle re-entry in post-mitotic neurons.Thus,Cdk5 hyperactivation,by its physiologic activator p25,hyper-phosphorylates downstream substrates related to neurodegenerative diseases.This review summarizes factors such as oxidative stress,DNA damage response,signaling pathway disturbance,and Ubiquitin proteasome malfunction contributing to cell cycle re-entry in post-mitotic neurons.It also describes how all these factors are linked to a greater or lesser extent with Cdk5.Thus,it offers a global vision of the function of cell cycle-related proteins in mature neurons with a focus on Cdk5 and how this protein contributes to the development of Alzheimer’s disease,Parkinson’s disease,amyotrophic lateral sclerosis,and Huntington’s disease by cell cycle activation. 展开更多
关键词 Alzheimer´s disease amyotrophic lateral sclerosis apoptosis CDK5 cell cycle Huntington´s disease NEURODEGENERATION neuron oxidative stress Parkinson´s disease signaling Tau phosphorylation
下载PDF
Combinatorial effect of diclofenac with piperine and D-limonene on inducing apoptosis and cell cycle arrest of breast cancer cells
3
作者 Srivarshini Sankar Gothandam Kodiveri Muthukaliannan 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2023年第2期80-92,共13页
Objective:To investigate the potential synergistic activity of diclofenac with piperine and D-limonene in inducing apoptosis and cell cycle arrest in breast cancer MCF-7 cells.Methods:Molecular docking study was condu... Objective:To investigate the potential synergistic activity of diclofenac with piperine and D-limonene in inducing apoptosis and cell cycle arrest in breast cancer MCF-7 cells.Methods:Molecular docking study was conducted to evaluate the binding affinity of diclofenac with piperine and D-limonene against p53,Bax,and Bcl-2.The MTT assay was used to determine IC50,and the Chou-Talay method was used to determine the synergistic concentration of the combination treatment of diclofenac plus piperine and diclofenac plus D-limonene.Apoptosis detection,cell cycle arrest,reactive oxygen species production,and mitochondrial membrane potential were also investigated.Results:Diclofenac,piperine,and D-limonene showed potent binding affinity for p53,Bax,and Bcl-2.Diclofenac plus piperine and diclofenac plus D-limonene enhanced the formation of reactive oxygen species,which also had an effect on the mitochondrial membrane’s integrity and caused DNA fragmentation.Diclofenac plus piperine and diclofenac plus D-limonene arrested the cells in the sub-G0phase while drastically lowering the percentage of cells in the G2/M phase.Furthermore,the elevated apoptosis in the combined therapy was confirmed by annexin V/propidium iodide staining.Conclusions:The combined therapy prominently enhanced the antiproliferative and apoptotic effects on MCF-7 cells compared with treatment with diclofenac,piperine,and D-limonene alone. 展开更多
关键词 Breast cancer Diclofenac sodium PIPERINE D-LIMONENE Reactive oxygen species cell cycle arrest APOPTOSIS
下载PDF
Wild pink bayberry free phenolic extract induces mitochondria-dependent apoptosis and G0/G1 cell cycle arrest through p38/MAPK and PI3K/Akt pathway in MDA-MB-231 cancer cells
4
作者 Wen Xia Ersheng Gong +6 位作者 Yanyun Lin Bisheng Zheng Wenhan Yang Tong Li Sheng Zhang Peng Li Ruihai Liu 《Food Science and Human Wellness》 SCIE CSCD 2023年第5期1510-1518,共9页
Polyphenol-rich foods have been shown to be good for cancer prevention as powerful antioxidants. In this study, the mechanisms of wild pink bayberry free phenolic extract(WPBFE)inhibiting the proliferation and inducin... Polyphenol-rich foods have been shown to be good for cancer prevention as powerful antioxidants. In this study, the mechanisms of wild pink bayberry free phenolic extract(WPBFE)inhibiting the proliferation and inducing apoptotic of MDA-MB-231 breast cancer cells was examined. The main phenolic acids and flavonols in WPBFE were gallic acid((18.83 ± 0.44)μg/g FW)and myricetin((1.52 ± 0.05)μg/g FW), respectively. The maximum inhibition rate of WPBFE at non-cytotoxicity dose(below 80 mg/mL)was 81%. Western blotting analysis showed that WPBFE could cause the arrest of cell cycle in G0/G1 phase by down-regulating expression levels of PCNA, CDK4, cyclin D1 and up-regulating the expression level of p21. Meanwhile, WPBFE induced apoptosis through initiating the mitochondrial death pathway by up-regulating cleaved caspase-3 and enhancing the ratio of Bax/Bcl-2, with the maximum expression levels of 1.29 and 2.03 folds that of control group, respectively. Further study of the upstream protein, we found that WPBFE down-regulated TRAF2, while upregulated p-ASK1, p-p38 and p-p53. Furthermore, WPBFE could down-regulate the expression of p-PI3K and p-Akt. These observations indicated that WPBFE might play an anticancer role through regulating the p38 MAPK together with PI3K/Akt pathway. 展开更多
关键词 Phenolic extract Breast cancer cell cycle Apoptosis cell proliferation
下载PDF
Expression dynamics of periodic transcripts during cancer cell cycle progression and their correlation with anticancer drug sensitivity
5
作者 Chun‑Xiao Li Jin‑Song Wang +11 位作者 Wen‑Na Wang Dong‑Kui Xu Yan‑Tong Zhou Fang‑Zhou Sun Yi‑Qun Li Feng‑Zhu Guo Jia‑Lu Ma Xue‑Yan Zhang Meng‑Jiao Chang Bing‑He Xu Fei Ma Hai‑Li Qian 《Military Medical Research》 SCIE CAS CSCD 2023年第4期444-460,共17页
Background:The cell cycle is at the center of cellular activities and is orchestrated by complex regulatory mechanisms,among which transcriptional regulation is one of the most important components.Alternative splicin... Background:The cell cycle is at the center of cellular activities and is orchestrated by complex regulatory mechanisms,among which transcriptional regulation is one of the most important components.Alternative splicing dramatically expands the regulatory network by producing transcript isoforms of genes to exquisitely control the cell cycle.However,the patterns of transcript isoform expression in the cell cycle are unclear.Therapies targeting cell cycle checkpoints are commonly used as anticancer therapies,but none of them have been designed or evaluated at the alternative splicing transcript level.The utility of these transcripts as markers of cell cycle-related drug sensitivity is still unknown,and studies on the expression patterns of cell cycle-targeting drug-related transcripts are also rare.Methods:To explore alternative splicing patterns during cell cycle progression,we performed sequential transcriptomic assays following cell cycle synchronization in colon cancer HCT116 and breast cancer MDA-MB-231 cell lines,using flow cytometry and reference cell cycle transcripts to confirm the cell cycle phases of samples,and we developed a new algorithm to describe the periodic patterns of transcripts fluctuating during the cell cycle.Genomics of Drug Sensitivity in Cancer(GDSC)drug sensitivity datasets and Cancer Cell Line Encyclopedia(CCLE)transcript datasets were used to assess the correlation of genes and their transcript isoforms with drug sensitivity.We identified transcripts associated with typical drugs targeting cell cycle by determining correlation coefficients.Cytotoxicity assays were used to confirm the effect of ENST00000257904 against cyclin dependent kinase 4/6(CDK4/6)inhibitors.Finally,alternative splicing transcripts associated with mitotic(M)phase arrest were analyzed using an RNA synthesis inhibition assay and transcriptome analysis.Results:We established high-resolution transcriptome datasets of synchronized cell cycle samples from colon cancer HCT116 and breast cancer MDA-MB-231 cells.The results of the cell cycle assessment showed that 43,326,41,578 and 29,244 transcripts were found to be periodically expressed in HeLa,HCT116 and MDA-MB-231 cells,respectively,among which 1280 transcripts showed this expression pattern in all three cancer cell lines.Drug sensitivity assessments showed that a large number of these transcripts displayed a higher correlation with drug sensitivity than their corresponding genes.Cell cycle-related drug screening showed that the level of the CDK4 transcript ENST00000547281 was more significantly associated with the resistance of cells to CDK4/6 inhibitors than the level of the CDK4 reference transcript ENST00000257904.The transcriptional inhibition assay following M phase arrest further confirmed the M-phase-specific expression of the splicing transcripts.Combined with the cell cycle-related drug screening,the results also showed that a set of periodic transcripts,for example,ENST00000314392(a dolichylphosphate mannosyltransferase polypeptide 2 isoform transcript),was more associated with drug sensitivity than the levels of their corresponding gene transcripts.Conclusions:In summary,we identified a panel of cell cycle-related periodic transcripts and found that the levels of transcripts of drug target genes showed different values for predicting drug sensitivity,providing novel insights into alternative splicing-related drug development and evaluation. 展开更多
关键词 cell cycle Alternative splicing Transcriptome Drug resistance Cyclin dependent kinase 4/6 inhibitor Dolichyl-phosphate mannosyltransferase polypeptide 2
下载PDF
Novel coumarone-derived(S,E)-4-(4-fluorobenzylidene)-3-phenylchroman-3-ol inhibits muscle-invasive bladder cancer cells by repressing the S and G2 cell cycle phases
6
作者 Xin-Yi Han A-Dan Li +3 位作者 Fa-Ying Zhou Chao Li Guo-Du Liu Yong Xia 《Precision Medicine Research》 2023年第2期8-15,共8页
Background:This study aimed to select compounds with unique inhibitory effects on muscle-invasive bladder cancer(MIBC)from coumarone derivatives with similar parent nuclear structures and to reveal their tumor-suppres... Background:This study aimed to select compounds with unique inhibitory effects on muscle-invasive bladder cancer(MIBC)from coumarone derivatives with similar parent nuclear structures and to reveal their tumor-suppressive effects using various approaches.Methods:Bladder cancer cell lines SW780 and T24,as well as human normal bladder epithelial cell line SV-HUC-1 were selected as the study model,and these urinary system cells were co-incubated with various concentrations of(S,E)-4-(4-methylbenzylidene)-3-phenylchroman-3-ol,(S,E)-4-(4-isocyanobenzylidene)-3-phenylchroman-3-ol,(S,E)-4-(4-fluorobenzylidene)-3-phenylchroman-3-ol(FPO),and(S,E)-3-phenyl-4-(4-(trifluoromethoxy)benzylidene)chroman-3-ol.Cell activity was detected using cell counting kit-8.FPO showed the strongest inhibitory effect on MIBC cells;therefore,it was selected for further experiments.We monitored the FPO-induced T24 cell morphological changes with an inverted microscope.The FPO-inhibited migration of T24 cells was examined using a cell scratch assay.We detected the clonogenic ability of T24 cells through a clone formation test and evaluated their proliferative ability using a 5-ethynyl-2’-deoxyuridine fluorescence staining kit.The inhibitory effect of FPO against the cell cycle was monitored using flow cytometry,and its suppressive effect on the DNA replication ability of T24 cells was detected using double fluorescence staining(Ki67 and phalloidin).Results:Among the four candidate coumarone derivatives,FPO showed the most significant inhibitory effect on MIBC cells and was less toxic to normal urothelial cells.FPO inhibited T24 cell growth in time and dose-dependent manners(the half-inhibitory concentration is 8μM).FPO significantly repressed the proliferation,migration,and clonogenic ability of bladder cancer T24 cells.Cell mobility was significantly inhibited by FPO:30μM FPO almost completely repressed migration occurred at after 24 h treatment.Moreover,FPO significantly suppressed the clonogenicity of bladder cancer cells in a dose-dependent manner.Mechanistically,FPO targeted the cell cycle,arresting the S and G2 phases on bladder cancer T24 cells.Conclusion:We discovered a novel anticancer chemical,FPO,and proposed a potential mechanism,through which it suppresses MIBC T24 cells by repressing the cell cycle in the S and G2 phases.This study contributes to the development of novel anticancer drugs for MIBC. 展开更多
关键词 muscle-invasive bladder cancer cell proliferation cell cycle DNA replication coumarone derivate
下载PDF
Multiple Defects of Cell Cycle Checkpoints in U937-ASPI3K, an U937 Cell Mutant Stably Expressing Anti-Sense ATM Gene cDNA 被引量:5
7
作者 周剑锋 刘文励 +2 位作者 孙岚 孙汉英 汤屹 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2000年第4期273-276,共4页
(Ataxia-telangiectasia mutated gene (ATM) functions in control of cell cycle checkpoints in responding to DNA damage and protects cells from undergoing apoptosis. Knock-out within tumor cells of endogenous ATM will ... (Ataxia-telangiectasia mutated gene (ATM) functions in control of cell cycle checkpoints in responding to DNA damage and protects cells from undergoing apoptosis. Knock-out within tumor cells of endogenous ATM will achieve therapeutic benefits and enable a better understanding of the decisive mechanisms of cell death or survival in response to DNA damaging agents. ) In present paper, we sought to characterize the cell cycle checkpoint profiles in U937-ASPI3K, a U937 cell mutant that was previously established with endogenous ATM knock-out phenotype. Syn- chronized U937-ASPI3K was exposed to 137Cs irradiation, G1, S. G2/M cell cycle checkpoint pro- files were evaluated by determining cell cycle kinetics, p53/p21 protein, cyclin dependent kinase 2 (CDK2) and p34CDC2 kinase activity in response to irradiation. U937-ASPI3K exhibited multiple defects in cell cycle checkpoints as defined by failing to arrest cells upon irradiation. The accumulation of cellular p53/p21 protein and inhibition of CDK kinase was also abolished in U937-ASPI3K. It was concluded that the stable expression of anti-sense PI3K cDNA fragment completely abolished multiple cell cycle checkpoints in U937-ASPI3K, and hence U937-ASPI3K with an AT-like phenotype could serves as a valuable model system for investigating the signal transduction pathway in responding to DNA damaging-based cancer therapy. 展开更多
关键词 ataxia-telangiectasia mutated ATM cell cycle apoptosis cell cycle checkpoints
下载PDF
Down-regulation of Hsp90 could change cell cycle distribution and increase drug sensitivity of tumor cells 被引量:21
8
作者 Liu XL Xiao B +5 位作者 Yu ZC Guo JC Zhao QC Xu L Shi YQ Fan DM 《World Journal of Gastroenterology》 SCIE CAS CSCD 1999年第3期199-208,共10页
:AIM To construct Hsp90 antisense RNAeukaryotic expression vector, transfect it intoSGC7901 and SGC7901/VCR of MDR-type humangastric cancer cell lines, HCC7402 of humanhepatic cancer and Eel09 of human esophagealcance... :AIM To construct Hsp90 antisense RNAeukaryotic expression vector, transfect it intoSGC7901 and SGC7901/VCR of MDR-type humangastric cancer cell lines, HCC7402 of humanhepatic cancer and Eel09 of human esophagealcancer cell lines, and to study the cell cycledistribution of the gene transected cells andtheir response to chemotherapeutic drugs.METHODS A I .03kb cDNA sequence of Hsp90Pwas obtained from the primary plasmid phHsp90by EcoR 1 and BamH I nuclease digestion andwas cloned to the EcoR 1 and BamH 1 site ofthe pcDNA by T4DNA ligase and an antisenseorientation of Hsp900 expression vector wasconstructed. The constructs were transfectedwith lipofectamine and positive clones wereselected with G418. The expression of RNA wasdetermined with dot blotting and RNaseprotection assay, and the expression of Hsp90protein determined with Western blot. Cell cycledistribution of the transfectants was analyzedwith flow cytometry, and the drug sensitivity ofthe transfectants to adriamycin (ADR ),vincrinstine (VCR ), mitomycin (MMC ) andcyclophosphamide (CTX ) with MTT andintracellular drug concentration of thetransfectants was determined with flowcytometry.RESULTS In EcoR 1 and BamH I restrictionanalysis, the size and the direction of the clonedsequence of Hsp900 remained what had beendesigned and the gene constructs were namedpcDNA-Hsp90. AH^SGC7901, AH^SGC7901/ VCR,AH-HCC7402 and AH-Eel09 cell clones allexpressed Hsp90 anti--sense RNA. Theexpression of Hsp90 was down--regulated in AHSGC7901, AH--SGC7901/ VCR, AH-HCC7402 andAH--Eel09 cell clones. Cell cycle distribution waschanged differently. In AH-SGC7901/ VCR andAH-Ec109 cells, G, phase cells were increased; Sphase and G, phase cells were decreased ascompared with their parental cell lines. In AHSGC7901 cell, G, phase cells were decreased, Qphase cells increased and S phase cells were notchanged, and in AH-HCC7402 cells G,, S and qphase cells remained unchanged as comparedwith their parental cell lines. The sensitivity ofAH--SGC7901, AH--SGC7901/ VCR, AH-HCC7402 andAH-Ec109 to chemotherapeutic drugs, thesensitivity ot AH--SGC7901/ VCR to ADR, VCR,MMC and CTX the sensitivity of AH-HCC7402 toADR and VCR, and the sensitivity of Eel09 toADR, VCR and CTX all increased as comparedwith their parental cell lines. The meanfluorescence intensity of ADR in AH--SGC7901,AH-SGC7901/ VCR, AH--HCC7402 and AH-Ec109was also significantly elevated (P< 0. 05).CONCLUSION Down-regulation of HsP90 couldchange cell cycle distribution and increase thedrug sensitivity of tumor cells. 展开更多
关键词 SGC VCR HCC antisenseRNA Down-regulation of Hsp90 could change cell cycle distribution and increase drug sensitivity of tumor cells cell cycle
下载PDF
Norcantharidin inhibits growth of human gallbladder carcinoma xenografted tumors in nude mice by inducing apoptosis and blocking the cell cycle in vivo 被引量:15
9
作者 Fan, Yue-Zu Zhao, Ze-Ming +2 位作者 Fu, Jin-Ye Chen, Chun-Qiu Sun, Wei 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS 2010年第4期414-422,共9页
BACKGROUND: Gallbladder carcinoma, a lethal malignant neoplasm with poor prognosis, has dismal results of surgical resection and chemoradiotherapy. We previously reported that norcantharidin (NCTD) is useful against g... BACKGROUND: Gallbladder carcinoma, a lethal malignant neoplasm with poor prognosis, has dismal results of surgical resection and chemoradiotherapy. We previously reported that norcantharidin (NCTD) is useful against growth, proliferation, and invasion of human gallbladder carcinoma GBC-SD cells in vitro. In this study, we further studied the inhibitory effect of NCTD on the growth of xenografted tumors of human gallbladder carcinoma in nude mice in vivo and the underlying mechanisms. METHODS: The tumor xenograft model of human gallbladder carcinoma in nude mice in vivo was established with subcutaneous GBC-SD cells. The experimental mice were randomly divided into control, 5-FU, NCTD, and NCTD+5-FU groups which were given different treatments. Tumor growth in terms of size, growth curve, and inhibitory rate was evaluated. Cell cycle, apoptosis, and morphological changes of the xenografted tumors were assessed by flow cytometry and light/electron microscopy. The expression of the cell cycle-related proteins cyclin-D1 and p27 as well as the apoptosis-related proteins Bcl-2, Box, and survivin were determined by the streptavidin-biotin complex (SABC) method and RT-PCR. RESULTS: NCTD inhibited the growth of the xenografted tumors in a dose- and time-dependent manner. Tumor volume decreased (5.61+/-0.39 vs. 9.78+/-0.61 cm(3), P=0.000) with an increased tumor inhibitory rate (42.63% vs. 0%, P=0.012) in the NTCD group compared with the control group. The apoptosis rate increased (15.08+/-1.49% vs. 5.49+/-0.59%, P=0.0001) along with a decreased percentage of cells in S phase (43.47+/-2.83% vs. 69.85+/-1.96%, P=0.0001) in the NTCD group compared with the control group. The morphological changes of apoptosis such as nuclear shrinkage, chromatin aggregation, chromosome condensation, and typical apoptosis bodies in the xenografted tumor cells induced by NCTD were observed by light and electron microscopy. The expression of cyclin-D1, Bcl-2 and survivin proteins/mRNAs decreased significantly, with increased expression of p27 and Bax proteins/mRNAs in the NCTD group compared with the control group. CONCLUSION: NCTD inhibits the growth of xenografted tumors of human gallbladder carcinoma in nude mice by inducing apoptosis and blocking the cell cycle in vivo. 展开更多
关键词 NORCANTHARIDIN gallbladder neoplasm tumor growth APOPTOSIS cell cycle
下载PDF
Osthole inhibits proliferation of human breast cancer cells by inducing cell cycle arrest and apoptosis 被引量:12
10
作者 Lintao Wang Yanyan Peng +4 位作者 Kaikai Shi Haixiao Wang Jianlei Lu Yanli Li Changyan Ma 《The Journal of Biomedical Research》 CAS CSCD 2015年第2期132-138,共7页
Recent studies have revealed that osthole,an active constituent isolated from the fruit of Cnidium monnieri(L.) Cusson,a traditional Chinese medicine,possesses anticancer activity.However,its effect on breast cancer... Recent studies have revealed that osthole,an active constituent isolated from the fruit of Cnidium monnieri(L.) Cusson,a traditional Chinese medicine,possesses anticancer activity.However,its effect on breast cancer cells so far has not been elucidated clearly.In the present study,we evaluated the effects of osthole on the proliferation,cell cycle and apoptosis of human breast cancer cells MDA-MB 435.We demonstrated that osthole is effective in inhibiting the proliferation of MDA-MB 435 cells,The mitochondrion-mediated apoptotic pathway was involved in apoptosis induced by osthole,as indicated by activation of caspase-9 and caspase-3 followed by PARP degradation.The mechanism underlying its effect on the induction of G1 phase arrest was due to the up-regulation of p53 and p21 and down-regulation of Cdk2 and cyclin D1 expression.Were observed taken together,these findings suggest that the anticancer efficacy of osthole is mediated via induction of cell cycle arrest and apoptosis in human breast cancer cells and osthole may be a potential chemotherapeutic agent against human breast cancer. 展开更多
关键词 OSTHOLE breast cancer PROLIFERATION cell cycle APOPTOSIS
下载PDF
Change of the cell cycle after flutamide treatment in prostate cancer cells and its molecular mechanism 被引量:9
11
作者 Yong Wang Chen Shao +9 位作者 Chang-Hong Shi Lei Zhang Hong-Hong Yue Peng-Fei Wang Bo Yang Yun-Tao Zhang Fan Liu Wei-Jun Qin He Wang Guo-Xing Shao 《Asian Journal of Andrology》 SCIE CAS CSCD 2005年第4期375-380, ,共6页
Aim: To explore the effect of androgen receptor (AR) on the expression of the cell cycle-related genes, such as CDKNIA and BTG1, in prostate cancer cell line LNCaP. Methods: After AR antagonist flutamide treatment... Aim: To explore the effect of androgen receptor (AR) on the expression of the cell cycle-related genes, such as CDKNIA and BTG1, in prostate cancer cell line LNCaP. Methods: After AR antagonist flutamide treatment and confirmation of its effect by phase contrast microscope and flow cytometry, the differential expression of the cell cycle-related genes was analyzed by a cDNA microarray. The flutamide treated cells were set as the experimental group and the LNCaP cells as the control. We labeled cDNA probes of the experimental group and control group with Cy5 and Cy3 dyes, respectively, through reverse transcription. Then we hybridized the cDNA probes with cDNA microarrays, which contained 8 126 unique human cDNA sequences and the chip was scanned to get the fluorescent values of Cy5 and Cy3 on each spot. After primary analysis, reverse transcription polymerase chain reaction (RT- PCR) tests were carried out to confirm the results of the chips. Results:After AR antagonist flutamide treatment, three hundred and twenty-six genes (3.93 %) expressed differentially, 97 down-regulated and 219 up-regulated. Among them, eight up-regulated genes might be cell cycle-related, namely CDCIO, NRAS, BTG1, Wee1, CLK3, DKFZP564A122, CDKNIA and BTG2. The CDKNIA and BTG1 gene mRNA expression was confirmed to be higher in the experimental group by RT-PCR, while p53 mRNA expression had no significant changes. Conclusion: Flutamide treatment might up-regulate CDKN1A and BTG1 expression in prostate cancer cells. The protein expressions of CDKN1A and BTG1 play an important role in inhibiting the proliferation of cancer cells. CDKN1A has a great impact on the cell cycle of prostate cancer cells and may play a role in the cancer cells in a p53-independent pathway. The prostate cancer cells might affect the cell cycle-related genes by activating AR and thus break the cell cycle control. 展开更多
关键词 prostate cancer LNCAP p21 androgen receptor CDKN1A BTG1 cell cycle genes FLUTAMIDE
下载PDF
Intrinsic apoptotic pathway and G2/M cell cycle arrest involved in tubeimoside I-induced EC109 cell death 被引量:13
12
作者 Yang Xu Guanghui Wang +5 位作者 Quancheng Chen Ting Lin Zhiping Zeng Qiang Luo Jie Liu Cuiling Sun 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2013年第3期312-321,共10页
Objective: Squamous esophageal carcinoma is highly prevalent in developing countries, especially in China. Tu Bei Mu (TBM), a traditional folk medicine, has been used to treat esophageal squamous cell carcinoma (E... Objective: Squamous esophageal carcinoma is highly prevalent in developing countries, especially in China. Tu Bei Mu (TBM), a traditional folk medicine, has been used to treat esophageal squamous cell carcinoma (ESCC) for a long term. tubeimoside I (TBMS1) is the main component of TBM, exhibiting great anticancer potential. In this study, we investigated the mechanism of TBMS1 cytotoxic effect on EC109 cells. Methods: Comparative nuclear proteomic approach was applied in the current study and we identified several altered protein spots. Further biochemical studies were carried out to detect the mitochondrial membrane potential, cell cycle and corresponding proteins' expression and location. Results: Subcellular proteomic study in the nucleus from EC109 cells revealed that altered proteins were associated with mitochondrial function and cell proliferation. Further biochemical studies showed that TBMSl-induced molecular events were related to mitochondria-induced intrinsic apoptosis and P21-cyclin B 1/cdc2 complex-related G2/M cell cycle arrest. Conclusions: Considering the conventional application of TBM in esophageal cancer, TBMS1 therefore may have a great potential as a chemotherapeutic drug candidate for ESCC. 展开更多
关键词 Anticancer drug G2/M cell cycle arrest intrinsic apoptosis subcellular proteomics and tubeimoside I(TBMS 1)
下载PDF
Ent-11α-Hydroxy-15-oxo-kaur-16-en-19-oic-acid Inhibits Growth of Human Lung Cancer A549 Cells by Arresting Cell Cycle and Triggering Apoptosis 被引量:10
13
作者 Li Li George G Chen +6 位作者 Ying-nian Lu Yi Liu Ke-feng Wu Xian-ling Gong Zhan-ping Gou Ming-yue Li Nian-ci Liang 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2012年第2期109-115,共7页
Objective: To examine the apoptotic effect of ent-llα-hydroxy-15-oxo-kaur-16-en-19-oic-acid (5F), a compound isolated from Pteris semipinnata L (PsL), in human lung cancer A549 cells. Methods: A549 cells were ... Objective: To examine the apoptotic effect of ent-llα-hydroxy-15-oxo-kaur-16-en-19-oic-acid (5F), a compound isolated from Pteris semipinnata L (PsL), in human lung cancer A549 cells. Methods: A549 cells were treated with 5F (0-80 lag/ml) for different time periods. Cytotoxicity was examined using a Ml-I- method. Cell cycle was examined using propidium iodide staining. Apoptosis was examined using Hoechst 33258 staining, enzyme-linked immunosorbent assay (ELISA) and caspase-3 activity analysis. Expression of representative apoptosis-related proteins was evaluated by Western blot analysis. Reactive oxygen species (ROS) level was measured using standard protocols. Potential interaction of 5F with cisplatin was also examined. Results: 5F inhibited the proliferation of A549 cells in a concentration- and time-dependent manner. 5F increased the accumulation of cells in sub-G1 phase and arrested the cells in the G2 phase. Exposure to 5F induced morphological changes and DNA fragmentation that are characteristic of apoptosis. The expression of p21 was increased. 5F exposure also increased Bax expression, release of cytochrome c and apoptosis inducing factor (AIF), and activation of caspase-3. 5F significantly sensitized the cells to cisplatin toxicity. Interestingly, treatment with 5F did not increase ROS, but reduced ROS production induced by cisplatin. Conclusion: 5F could inhibit the proliferation of A549 cells by arresting the cells in G2 phase and by inducing mitochondrial-mediated apoptosis. 展开更多
关键词 Pteris semipinnata L Lung cancer G2 cell cycle arrest APOPTOSIS Reactive oxygen species
下载PDF
Silibinin induces hepatic stellate cell cycle arrest via enhancing p53/p27 and inhibiting Akt downstream signaling protein expression 被引量:8
14
作者 Devaraj Ezhilarasan Jonathan Evraerts +4 位作者 Brice Sid Pedro Buc Calderon Sivanesan Karthikeyan Etienne Sokal Mustapha Najimi 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS CSCD 2017年第1期80-87,共8页
BACKGROUND: Proliferation of hepatic stellate cells (HSCs) plays a pivotal role in the progression of liver fibrosis conse- quent to chronic liver injury. Silibinin, a flavonoid compound, has been shown to possess ... BACKGROUND: Proliferation of hepatic stellate cells (HSCs) plays a pivotal role in the progression of liver fibrosis conse- quent to chronic liver injury. Silibinin, a flavonoid compound, has been shown to possess anti-fibrogenic effects in animal models of liver fibrosis. This was attributed to an inhibition of cell proliferation of activated HSCs. The present study was to gain insight into the molecular pathways involved in silibinin anti-fibrogenic effect. METHODS: The study was conducted on LX-2 human stellate cells treated with three concentrations of silibinin (10, 50 and 100 μmol/L) for 24 and 96 hours. At the end of the treatment cell viability and proliferation were evaluated. Protein expression of p27, p21, p53, Akt and phosphorylated-Akt was evaluated by Western blotting analysis and Ki-67 protein expression was by immunocytochemistry. Sirtuin activity was evaluated by chemiluminescence based assay. RESULTS: Silibinin inhibits LX-2 cell proliferation in doseand time-dependent manner; we showed that silibinin upregulated the protein expressions of p27 and p53. Such regulation was correlated to an inhibition of both downstream Akt and phosphorylated-Akt protein signaling and Ki-67 protein expression. Sirtuin activity also was correlated to silibinin- inhibited proliferation of LX-2 cells. CONCLUSION: The anti-proliferative effect of silibinin on LX-2 human steUate cells is via the inhibition of the expres- sions of various cell cycle targets including p27, Akt and sir- tuin signaling. 展开更多
关键词 SILIBININ hepatic stellate cells in vitro cell cycle arrest proliferation
下载PDF
Analysis of DNA Ploidy, Cell Cycle and Ki67 Antigen in Nasopharyngeal Carcinoma by Flow Cytometry 被引量:6
15
作者 石小燕 袁响林 +2 位作者 陶德定 龚建平 胡国清 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2005年第2期198-201,共4页
Summary: The expression of DNA ploidy, the cell cycle and Ki67 antigen in nasopharyngeal carcinoma (NPC) were studied and their relationship with the clinical biological behaviors and prognosis of NPC was evaluated. B... Summary: The expression of DNA ploidy, the cell cycle and Ki67 antigen in nasopharyngeal carcinoma (NPC) were studied and their relationship with the clinical biological behaviors and prognosis of NPC was evaluated. Biopsied specimens of NPC were made into cell suspension. By using cytometric double labeling Ki67 and DNA method, the expression of DNA ploidy, the cell cycle and Ki67 antigen were analyzed. The patients were followed-up for about 3 years and the relationship between the above-mentioned parameters and the clinical biological behavior and prognosis of NPC were evaluated. Of the 62 cases of NPC, the DNA aneuploid accounted for 29.03 %. The S phase cells accounted for 0 to 54 % in the cell cycle and the positive expression of Ki67 ranged from 0 to 52 %. There were 40 cases of LPI (64.5 %) including 15 negative cases and 22 cases of HPI (35 5 %) respectively. The DNA anueploid content was positively related to the S phase cells. The patients having a low expression of Ki67 or DNA aneuploid in tumor cells were not sensitive to chemotherapy, liable to metastasis to distant organs and had a poor prognosis, while Ki67 showed no correlation with DNA ploidy and the cell cycle. It was suggested that DNA ploidy and Ki67 could be used as an independent and objective marker to evaluate the radiosensitivity and prognosis of NPC. 展开更多
关键词 nasopharyngeal carcinoma DNA ploidy cell cycle Ki67 antigen flow cytometry
下载PDF
Cell cycle and complement inhibitors may be specific for treatment of spinal cord injury in aged and young mice: transcriptomic analyses 被引量:4
16
作者 Ming Hao Xin-ran Ji +5 位作者 Hua Chen Wei Zhang Li-cheng Zhang Li-hai Zhang Pei-fu Tang Ning Lu 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第3期518-527,共10页
Previous studies have reported age-specific pathological and functional outcomes in young and aged patients suffering spinal cord injury,but the mechanisms remain poorly understood. In this study, we examined mice wit... Previous studies have reported age-specific pathological and functional outcomes in young and aged patients suffering spinal cord injury,but the mechanisms remain poorly understood. In this study, we examined mice with spinal cord injury. Gene expression profiles from the Gene Expression Omnibus database (accession number GSE93561) were used, including spinal cord samples from 3 young injured mice (2–3-months old, induced by Impactor at Th9 level) and 3 control mice (2–3-months old, no treatment), as well as 2 aged injured mice (15–18-months old, induced by Impactor at Th9 level) and 2 control mice (15–18-months old, no treatment). Differentially expressed genes (DEGs) in spinal cord tissue from injured and control mice were identified using the Linear Models for Microarray data method,with a threshold of adjusted P 〈 0.05 and |logFC(fold change)| 〉 1.5. Protein–protein interaction networks were constructed using data from the STRING database, followed by module analysis by Cytoscape software to screen crucial genes. Kyoto encyclopedia of genes and genomes pathway and Gene Ontology enrichment analyses were performed to investigate the underlying functions of DEGs using Database for Annotation, Visualization and Integrated Discovery. Consequently, 1,604 and 1,153 DEGs were identified between injured and normal control mice in spinal cord tissue of aged and young mice, respectively. Furthermore, a Venn diagram showed that 960 DEGs were shared among aged and young mice, while 644 and 193 DEGs were specific to aged and young mice, respectively. Functional enrichment indicates that shared DEGs are involved in osteoclast differentiation, extracellular matrix–receptor interaction, nuclear factor-kappa B signaling pathway, and focal adhesion. Unique genes for aged and young injured groups were involved in the cell cycle (upregulation of PLK1) and complement (upregulation of C3) activation, respectively. These findings were confirmed by functional analysis of genes in modules (common, 4; aged, 2; young, 1) screened from protein–protein interaction networks. Accordingly, cell cycle and complement inhibitors may be specific treatments for spinal cord injury in aged and young mice, respectively. 展开更多
关键词 nerve regeneration spinal cord injury aged young TRANSCRIPTOME differentially expressed genes protein-protein interaction network function enrichment inflammation cell cycle COMPLEMENT neural regeneration
下载PDF
Effects of Rapamycin on Expression of Bcl-2 and Bax in Human Lens Epithelial Cells and Cell Cycle in Rats 被引量:5
17
作者 王梓伊 王智 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2011年第4期555-559,共5页
The effects of rapamycin on the expression of Bcl-2 and Bax protein in in vitro cultured human lens epithelial cells(LECs) and cell cycle were investigated in order to provide the theoretical basis for the developme... The effects of rapamycin on the expression of Bcl-2 and Bax protein in in vitro cultured human lens epithelial cells(LECs) and cell cycle were investigated in order to provide the theoretical basis for the development of new inhibitory drugs for clinical prevention and treatment of after-cataract.The cultured LECs of second and third passages were collected and treated with rapamycin.The LECs were transferred into 96-well culture plates and divided into 6 groups,and each group was set to have 8 duplicate wells.In the negative control group,the LECs were given culture medium only,and in the blank control group,only culture medium was given.In the four rapamycin-treated groups,different concentrations(20,40,60 and 80 ng/mL) of rapamycin were given.After treatment for 24,48 and 72 h,the absorbance(A) values in each well were determined by MTT assay.The cell cycles of all groups were detected by using flow cytometry.Real-time fluorescent quantitative polymerase chain reaction(RFQ-PCR) and Western blot were used to detect the mRNA and protein expression of Bcl-2 and Bax respectively.MTT assay showed that rapamycin could inhibit proliferation of LECs in a time-and dose-dependent manner.Flow cytometry revealed that rapamycin could block the conversion of LECs from G1 phase to S phase,resulting in the increase of cells in G1 phase and the decrease of the cells in S phase.RFQ-PCR indicated that rapamycin could down-regulate the expression of Bcl-2 mRNA,but up-regulate the expression of Bax mRNA,suggesting it could induce apoptosis of LECs.Western blot demonstrated that rapamycin could suppress the expression of Bcl-2 protein,but promote the expression of Bax protein.It is concluded that rapamycin could inhibit proliferation of LECs probably not only by blocking the progression of cell cycle,but also by promoting the induction of apoptosis. 展开更多
关键词 RAPAMYCIN human lens epithelial cell cell cycle APOPTOSIS
下载PDF
PADI3 induces cell cycle arrest via the Sirt2/AKT/p21 pathway and acts as a tumor suppressor gene in colon cancer 被引量:4
18
作者 Xiaotian Chang Zhengbin Chai +5 位作者 Jiaorui Zou Hongxing Wang Yao Wang Yabing Zheng Hui Wu Chunyan Liu 《Cancer Biology & Medicine》 SCIE CAS CSCD 2019年第4期729-742,共14页
Objective:As a member of the peptidyl arginine deiminase(PAD)family,PADI3 is weakly expressed in colon cancer tissues and highly expressed in adjacent colon cancer tissues.However,the role of PADI3 in colon cancer is ... Objective:As a member of the peptidyl arginine deiminase(PAD)family,PADI3 is weakly expressed in colon cancer tissues and highly expressed in adjacent colon cancer tissues.However,the role of PADI3 in colon cancer is unclear.In this study,we investigated the function and molecular mechanism of PADI3 in colon cancer tumorigenesis.Methods:Western blot and real-time PCR were used to detect the expression levels of several genes.CCK-8,flow cytometry(FCM)and colony formation assays were used to examine cell proliferation,the cell cycle and colony formation ability.RNAsequencing analysis was used to study the molecular mechanism of PADI3 in tumorigenesis.A truncation mutation experiment was performed to determine the key functional domain of PADI3.Results:PADI3 overexpression inhibited cell proliferation and colony formation and led to G1 phase arrest in both HCT116(originating from primary colon cancer)and LoVo(originating from metastatic tumor nodules of colon cancer)cells.PADI3-expressing HCT116 cells had a lower tumor formation rate and produced smaller tumors than control cells.PADI3 significantly decreased Sirtuin2(Sirt2)and Snail expression and AKT phosphorylation and increased p21 expression,and Sirt2 overexpression partly reversed the effects induced by PADI3 overexpression.Immunocytochemistry showed that PADI3 is mainly localized in the cytoplasm.Truncation mutation experiments showed that the C-domain is the key domain involved in the antitumor activity of PADI3.Conclusions:PADI3 suppresses Snail expression and AKT phosphorylation and promotes p21 expression by downregulating Sirt2 expression in the cytoplasm,and the C-domain is the key domain for its antitumor activity. 展开更多
关键词 PADI3 Sirt2 colon cancer cell cycle C-DOMAIN
下载PDF
DDX3X regulates cell survival and cell cycle during mouse early embryonic development 被引量:4
19
作者 Qian Li Pan Zhang +8 位作者 Chao Zhang Ying Wang Ru Wan Ye Yang Xuejiang Guo Ran Huo Min Lin Zuomin Zhou Jiahao Sha 《The Journal of Biomedical Research》 CAS 2014年第4期282-291,共10页
DDX3X is a highly conserved DEAD-box RNA helicase that participates in RNA transcription, RNA splicing, and mRNA transport, translation, and nucleo-cytoplasmic transport. It is highly expressed in metaphase II (MII)... DDX3X is a highly conserved DEAD-box RNA helicase that participates in RNA transcription, RNA splicing, and mRNA transport, translation, and nucleo-cytoplasmic transport. It is highly expressed in metaphase II (MII) oocytes and is the predominant DDX3 variant in the ovary and embryo. However, whether it is important in mouse early embryo development remains unknown. In this study, we investigated the function of DDX3X in early embryogenesis by cytoplasmic microinjection with its siRNA in zygotes or single blastomeres of 2-cell embryos. Our results showed that knockdown of Ddx3x in zygote cytoplasm led to dramatically diminished blastocyst formarion, reduced cell numbers, and an increase in the number of apoptotic cells in blastocysts. Meanwhile, there was an accumulation of p53 in RNAi blastocysts. In addition, the ratio of cell cycle arrest during 2-cell to 4-cell transition increased following microinjection of Ddx3x siRNA into single blastomeres of 2-cell embryos compared with control. These results suggest that Ddx3x is an essential gene associated with cell survival and cell cycle control in mouse early embryos, and thus plays key roles in normal embryo development. 展开更多
关键词 DDX3X early embryo P53 APOPTOSIS cell cycle
下载PDF
Cell cycle regulation and anticancer drug discovery 被引量:4
20
作者 Jingwen Bai Yaochen Li Guojun Zhang 《Cancer Biology & Medicine》 SCIE CAS CSCD 2017年第4期348-362,共15页
Cellular growth,development,and differentiation are tightly controlled by a conserved biological mechanism:the cell cycle.This cycle is primarily regulated by cyclin-dependent kinase(CDK)-cyclin complexes,checkpoint k... Cellular growth,development,and differentiation are tightly controlled by a conserved biological mechanism:the cell cycle.This cycle is primarily regulated by cyclin-dependent kinase(CDK)-cyclin complexes,checkpoint kinases,and CDK inhibitors.Deregulation of the cell cycle is a hallmark of the transformation of normal cells into tumor cells.Given its importance in tumorigenesis,several cell cycle inhibitors have emerged as potential therapeutic drugs for the treatment of cancers-both as singleagent therapy and in combination with traditional cytotoxic or molecular targeting agents.In this review,we discuss the mechanisms underlying cell cycle regulation and present small-molecule anticancer drugs that are under development,including both pan-CDK inhibitors and CDK4/6-selective inhibitors.In addition,we provide an outline of some promising CDK inhibitors currently in preclinical and clinical trials that target cell cycle abnormalities in various cancers. 展开更多
关键词 cell cycle regulation cyclin-dependent kinases(CDK) CYCLIN pan-CDK inhibitors CDK4/6-selective inhibitors
下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部