The analysis was made over the leukograms of leukocyte concentrate in venous blood of healthy people (77 persons) and a group consisting from 18 persons with hybrid cells (LE-phenomenon) detected in them. Authors ...The analysis was made over the leukograms of leukocyte concentrate in venous blood of healthy people (77 persons) and a group consisting from 18 persons with hybrid cells (LE-phenomenon) detected in them. Authors constructed in vitro processes, which take place in vivo, and got the artificial morphological analogue of LE-cells through a physical and chemical agent--polyethylene glycol. The suggestion was made that the formation of hybrid cells in vivo (on the example of lupus erythematosus) depends on a contact of examinee with ecological toxicants.展开更多
Ischemic stroke is a major cause of mortality and disability worldwide,with limited treatment options available in clinical practice.The emergence of stem cell therapy has provided new hope to the field of stroke trea...Ischemic stroke is a major cause of mortality and disability worldwide,with limited treatment options available in clinical practice.The emergence of stem cell therapy has provided new hope to the field of stroke treatment via the restoration of brain neuron function.Exogenous neural stem cells are beneficial not only in cell replacement but also through the bystander effect.Neural stem cells regulate multiple physiological responses,including nerve repair,endogenous regeneration,immune function,and blood-brain barrier permeability,through the secretion of bioactive substances,including extracellular vesicles/exosomes.However,due to the complex microenvironment of ischemic cerebrovascular events and the low survival rate of neural stem cells following transplantation,limitations in the treatment effect remain unresolved.In this paper,we provide a detailed summary of the potential mechanisms of neural stem cell therapy for the treatment of ischemic stroke,review current neural stem cell therapeutic strategies and clinical trial results,and summarize the latest advancements in neural stem cell engineering to improve the survival rate of neural stem cells.We hope that this review could help provide insight into the therapeutic potential of neural stem cells and guide future scientific endeavors on neural stem cells.展开更多
BACKGROUND Mesenchymal stem cells(MSCs)modulated by various exogenous signals have been applied extensively in regenerative medicine research.Notably,nanosecond pulsed electric fields(nsPEFs),characterized by short du...BACKGROUND Mesenchymal stem cells(MSCs)modulated by various exogenous signals have been applied extensively in regenerative medicine research.Notably,nanosecond pulsed electric fields(nsPEFs),characterized by short duration and high strength,significantly influence cell phenotypes and regulate MSCs differentiation via multiple pathways.Consequently,we used transcriptomics to study changes in messenger RNA(mRNA),long noncoding RNA(lncRNA),microRNA(miRNA),and circular RNA expression during nsPEFs application.AIM To explore gene expression profiles and potential transcriptional regulatory mechanisms in MSCs pretreated with nsPEFs.METHODS The impact of nsPEFs on the MSCs transcriptome was investigated through whole transcriptome sequencing.MSCs were pretreated with 5-pulse nsPEFs(100 ns at 10 kV/cm,1 Hz),followed by total RNA isolation.Each transcript was normalized by fragments per kilobase per million.Fold change and difference significance were applied to screen the differentially expressed genes(DEGs).Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to elucidate gene functions,complemented by quantitative polymerase chain reaction verification.RESULTS In total,263 DEGs were discovered,with 92 upregulated and 171 downregulated.DEGs were predominantly enriched in epithelial cell proliferation,osteoblast differentiation,mesenchymal cell differentiation,nuclear division,and wound healing.Regarding cellular components,DEGs are primarily involved in condensed chromosome,chromosomal region,actin cytoskeleton,and kinetochore.From aspect of molecular functions,DEGs are mainly involved in glycosaminoglycan binding,integrin binding,nuclear steroid receptor activity,cytoskeletal motor activity,and steroid binding.Quantitative real-time polymerase chain reaction confirmed targeted transcript regulation.CONCLUSION Our systematic investigation of the wide-ranging transcriptional pattern modulated by nsPEFs revealed the differential expression of 263 mRNAs,2 miRNAs,and 65 lncRNAs.Our study demonstrates that nsPEFs may affect stem cells through several signaling pathways,which are involved in vesicular transport,calcium ion transport,cytoskeleton,and cell differentiation.展开更多
Cell therapy approaches that employ engineered mam-malian cells for on-demand production of therapeutic agents in the patient's body are moving beyond proof-of-concept in translational medicine.The therapeutic cel...Cell therapy approaches that employ engineered mam-malian cells for on-demand production of therapeutic agents in the patient's body are moving beyond proof-of-concept in translational medicine.The therapeutic cells can be customized to sense user-defined signals,pro-cess them,and respond in a programmable and pre-dictable way.In this paper,we introduce the available tools and strategies employed to design therapeutic cells.Then,various approaches to control cell behav-iors,including open-loop and closed-loop systems,are discussed.We also highlight therapeutic applications of engineered cells for early diagnosis and treatment of various diseases in the clinic and in experimental dis-ease models.Finally,we consider emerging technolo-gies such as digital devices and their potential for incorporation into future cell-based therapies.展开更多
White blood cells (WBC) or leukocytes are a vital component ofthe blood which forms the immune system, which is accountable to fightforeign elements. The WBC images can be exposed to different data analysisapproaches ...White blood cells (WBC) or leukocytes are a vital component ofthe blood which forms the immune system, which is accountable to fightforeign elements. The WBC images can be exposed to different data analysisapproaches which categorize different kinds of WBC. Conventionally, laboratorytests are carried out to determine the kind of WBC which is erroneousand time consuming. Recently, deep learning (DL) models can be employedfor automated investigation of WBC images in short duration. Therefore,this paper introduces an Aquila Optimizer with Transfer Learning basedAutomated White Blood Cells Classification (AOTL-WBCC) technique. Thepresented AOTL-WBCC model executes data normalization and data augmentationprocess (rotation and zooming) at the initial stage. In addition,the residual network (ResNet) approach was used for feature extraction inwhich the initial hyperparameter values of the ResNet model are tuned by theuse of AO algorithm. Finally, Bayesian neural network (BNN) classificationtechnique has been implied for the identification of WBC images into distinctclasses. The experimental validation of the AOTL-WBCC methodology isperformed with the help of Kaggle dataset. The experimental results foundthat the AOTL-WBCC model has outperformed other techniques which arebased on image processing and manual feature engineering approaches underdifferent dimensions.展开更多
Presently, there is a high paucity of bone grafts in the United States and worldwide. Regenerating bone is of prime concern due to the current demand of bone grafts and the increasing number of diseases causing bone l...Presently, there is a high paucity of bone grafts in the United States and worldwide. Regenerating bone is of prime concern due to the current demand of bone grafts and the increasing number of diseases causing bone loss. Autogenous bone is the present gold standard of bone regeneration. However, disadvantages like donor site morbidity and its decreased availability limit its use. Even allografts and synthetic grafting materials have their own limitations. As certain specific stem cells can be directed to differentiate into an osteoblastic lineage in the presence of growth factors(GFs), it makes stem cells the ideal agents for bone regeneration.Furthermore, platelet-rich plasma(PRP), which can be easily isolated from whole blood, is often used for bone regeneration, wound healing and bone defect repair. When stem cells are combined with PRP in the presence of GFs, they are able to promote osteogenesis. This review provides in-depth knowledge regarding the use of stem cells and PRP in vitro, in vivo and their application in clinical studies in the future.展开更多
Tooth loss compromises human oral health. Although several prosthetic methods, such as artificial denture and dental implants, are clinical therapies to tooth loss problems, they are thought to have safety and usage t...Tooth loss compromises human oral health. Although several prosthetic methods, such as artificial denture and dental implants, are clinical therapies to tooth loss problems, they are thought to have safety and usage time issues. Recently, tooth tissue engineering has attracted more and more attention. Stem cell based tissue engineering is thought to be a promising way to replace the missing tooth. Mesenchymal stem cells (MSCs) are multipotent stem cells which can differentiate into a variety of cell types. The potential MSCs for tooth regeneration mainly include stem cells from human exfoliated deciduous teeth (SHEDs), adult dental pulp stem cells (DPSCs), stem cells from the apical part of the papilla (SCAPs), stem cells from the dental follicle (DFSCs), periodontal ligament stem cells (PDLSCs) and bone marrow derived mesenchymal stem cells (BMSCs). This review outlines the recent progress in the mesenchymal stem cells used in tooth regeneration.展开更多
Knee osteoarthritis (OA) is the most common form of arthritis worldwide. The incidence of this disease is rising and its treatment poses an economic burden. Two early targets of knee OA treatment include the predomi...Knee osteoarthritis (OA) is the most common form of arthritis worldwide. The incidence of this disease is rising and its treatment poses an economic burden. Two early targets of knee OA treatment include the predominant symptom of pain, and cartilage damage in the knee joint. Current treatments have been beneficial in treating the disease but none is as effective as total knee arthroplasty (TKA). However, while TKA is an end-stage solution of the disease, it is an invasive and expensive procedure, Therefore, innovative regenerative engineering strategies should be established as these could defer or annul the need for a TKA. Several biomaterial and cell-based therapies are currently in development and have shown early promise in both preclinical and clinical studies. The use of advanced biomaterials and stem cells independently or in conjunction to treat knee OA could potentially reduce pain and regenerate fo- cal articular cartilage damage. In this review, we discuss the pathogenesis of pain and cartilage damage in knee OA and explore novel treatment options currently being studied, along with some of their limitations.展开更多
Tissue engineering is promising to meet the increasing need for bone regeneration. Nanostructured calcium phosphate (CAP) biomaterials/scaffolds are of special interest as they share chemical/crystallographic simila...Tissue engineering is promising to meet the increasing need for bone regeneration. Nanostructured calcium phosphate (CAP) biomaterials/scaffolds are of special interest as they share chemical/crystallographic similarities to inorganic components of bone. Three applications of nano-CaP are discussed in this review: nanostructured calcium phosphate cement (CPC); nano-CaP composites; and nano-CaP coatings. The interactions between stem cells and nano-CaP are highlighted, including cell attachment, orientation/ morphology, differentiation and in vivo bone regeneration. Several trends can be seen: (i) nano-CaP biomaterials support stem cell attachment/proliferation and induce osteogenic differentiation, in some cases even without osteogenic supplements; (ii) the influence of nano-CaP surface patterns on cell alignment is not prominent due to non-uniform distribution of nano-crystals; (iii) nano-CaP can achieve better bone regeneration than conventional CaP biomaterials; (iv) combining stem cells with nano-CaP accelerates bone regeneration, the effect of which can be further enhanced by growth factors; and (v) cell microencapsulation in nano-CaP scaffolds is promising for bone tissue engineering. These understandings would help researchers to further uncover the underlying mechanisms and interactions in nano-CaP stem cell constructs in vitro and in vivo, tailor nano-CaP composite construct design and stem cell type selection to enhance cell function and bone regeneration, and translate laboratory findings to clinical treatments.展开更多
The energy barrier at the CH3NH3Pb Br3/TiO2interface hinders the electron transfer from CH3NH3Pb Br3to compact TiO2(cp-TiO2).Ionic liquid(IL),that forms dipoles pointing away from TiO2,can adjust the work function...The energy barrier at the CH3NH3Pb Br3/TiO2interface hinders the electron transfer from CH3NH3Pb Br3to compact TiO2(cp-TiO2).Ionic liquid(IL),that forms dipoles pointing away from TiO2,can adjust the work function of TiO2resulting in suitable energy level for charge transfer from CH3NH3Pb Br3to TiO2.The time-resolved photoluminescence spectroscopy(TRPL)measurements confirm faster electron transfer from the CH3NH3Pb Br3film to TiO2after modification by IL.Solar cells based on IL modified cp-TiO2demonstrate efficiency of~6%,much higher than the devices(0.2%)fabricated using untreated cp-TiO2as the electron transport layer.展开更多
Peripheral nerve injury(PNI)seriously affects people’s quality of life.Stem cell therapy is considered a promising new option for the clinical treatment of PNI.Dental stem cells,particularly dental pulp stem cells(DP...Peripheral nerve injury(PNI)seriously affects people’s quality of life.Stem cell therapy is considered a promising new option for the clinical treatment of PNI.Dental stem cells,particularly dental pulp stem cells(DPSCs),are adult pluripotent stem cells derived from the neuroectoderm.DPSCs have significant potential in the field of neural tissue engineering due to their numerous advantages,such as easy isolation,multidifferentiation potential,low immunogenicity,and low transplant rejection rate.DPSCs are extensively used in tissue engineering and regenerative medicine,including for the treatment of sciatic nerve injury,facial nerve injury,spinal cord injury,and other neurodegenerative diseases.This article reviews research related to DPSCs and their advantages in treating PNI,aiming to summarize the therapeutic potential of DPSCs for PNI and the underlying mechanisms and providing valuable guidance and a foundation for future research.展开更多
Mesenchymal stem cells(MSCs)experience substantial viability issues in the stroke infarct region,limiting their therapeutic efficacy and clinical translation.High levels of deadly reactive oxygen radicals(ROS)and proi...Mesenchymal stem cells(MSCs)experience substantial viability issues in the stroke infarct region,limiting their therapeutic efficacy and clinical translation.High levels of deadly reactive oxygen radicals(ROS)and proinflammatory cytokines(PC)in the infarct milieu kill transplanted MSCs,whereas low levels of beneficial ROS and PC stimulate and improve engrafted MSCs’viability.Based on the intrinsic hormesis effects in cellular biology,we built a microglia-inspired MSC bioengineering system to transform detrimental high-level ROS and PC into vitality enhancers for strengthening MSC therapy.This system is achieved by bioorthogonally arming metabolic glycoengineered MSCs with microglial membrane-coated nanoparticles and an antioxidative extracellular protective layer.In this system,extracellular ROSscavenging and PC-absorbing layers effectively buffer the deleterious effects and establish a microlivable niche at the level of a single MSC for transplantation.Meanwhile,the infarct’s inanimate milieu is transformed at the tissue level into a new living niche to facilitate healing.The engineered MSCs achieved viability five times higher than natural MSCs at seven days after transplantation and exhibited a superior therapeutic effect for stroke recovery up to 28 days.This vitality-augmented system demonstrates the potential to accelerate the clinical translation of MSC treatment and boost stroke recovery.展开更多
This future article discusses the new prospects and directions of CO_(2)conversion via the photo-electrocatalytic(PEC)route.The second(2nd)generation solar fuels and chemicals(SFs)are generated directly in PEC systems...This future article discusses the new prospects and directions of CO_(2)conversion via the photo-electrocatalytic(PEC)route.The second(2nd)generation solar fuels and chemicals(SFs)are generated directly in PEC systems via electrons/protons reactions without forming molecular H_(2)as an intermediate,overcoming the thermodynamics limitations and practical issues encountered for electro-fuels produced by multistep thermocatalytic processes(i.e.CO_(2)conversion with H_(2)coming from water electrolysis).A distributed and decentralized production of SFs requires very compact,highly integrated,and intensified technologies.Among the existing reactors of advanced design(based on artificial leaves or photosynthesis),the integrated photovoltaic plus electrocatalytic(PV-EC)device is the only system(demonstrated at large scale)to produce SFs with high solar-to-fuel(STF)efficiency.However,while the literature indicates STF efficiency as the main(and only)measure of process performance,we remark here the need to refer to productivity(in terms of current density)and make tests with reliable flow PEC systems(with electrodes of at least 5–10 cm^(2))to accelerate the scaling-up process.Using approaches that minimize downstream separation costs is also mandatory.Many limitations exist in PEC systems,but most can be overcome by proper electrode and cell engineering,thus going beyond the properties of the electrocatalysts.As examples of current developments,we present the progress of(i)artificial leaf/tree devices for green H_(2)distributed production and(ii)a PEC device producing the same chemicals at both cathode and anode parts without downstream operations for green solvent distributed production.Based on these developments,future directions,such as producing fertilizers and food components from the air,are outlined.The aim is to provide new ideas and research directions from a personal perspective.展开更多
Gastric cancer,a prevalent malignancy worldwide,ranks sixth in terms of frequency and third in fatality,causing over a million new cases and 769000 annual deaths.Predominant in Eastern Europe and Eastern Asia,risk fac...Gastric cancer,a prevalent malignancy worldwide,ranks sixth in terms of frequency and third in fatality,causing over a million new cases and 769000 annual deaths.Predominant in Eastern Europe and Eastern Asia,risk factors include family medical history,dietary habits,tobacco use,Helicobacter pylori,and Epstein-Barr virus infections.Unfortunately,gastric cancer is often diagnosed at an advanced stage,leading to a grim prognosis,with a 5-year overall survival rate below 5%.Surgical intervention,particularly with D2 Lymphadenectomy,is the mainstay for early-stage cases but offers limited success.For advanced cases,the National Comprehensive Cancer Network recommends chemotherapy,radiation,and targeted therapy.Emerging immunotherapy presents promise,especially for unresectable or metastatic cases,with strategies like immune checkpoint inhibitors,tumor vaccines,adoptive immunotherapy,and nonspecific immunomodulators.In this Editorial,with regards to the article“Advances and key focus areas in gastric cancer immunotherapy:A comprehensive scientometric and clinical trial review”,we address the advances in the field of immunotherapy in gastric cancer and its future prospects.展开更多
Cryoprotectants play a key role in cell cryopreservation because they can reduce cryoinjuries to cells associated with ice formation.To meet the clinical requirements of cryopreserved cells,cryoprotectants should be b...Cryoprotectants play a key role in cell cryopreservation because they can reduce cryoinjuries to cells associated with ice formation.To meet the clinical requirements of cryopreserved cells,cryoprotectants should be biocompatible,highly efficient and easily removable from cryopreserved cells.However,integration of these properties into one cryoprotectant still remains challenging.Herein,three biocompatible neutral amino acids,includingβ-alanine,γ-aminobutyric acid andε-aminocaproic acid,are first reported to have the potential as such ideal cryoprotectants.The results demonstrate that they can inhibit ice formation and reduce osmotic stress to provide extracellular and intracellular protection,thereby ensuring high cryopreservation efficiency for both anuclear and nucleated cells.More importantly,due to the remarkable osmotic regulation ability,the neutral amino acids can be rapidly removed from cryopreserved cells via a one-step method without causing observable damage to cells,superior to the current state-of-the-art cryoprotectants—dimethyl sulfoxide and glycerol.This work provides a new perspective to develop novel cryoprotectants,which may have dramatic impacts on solvent-free cryopreservation technology to support the cell-based applications,such as cell therapy and tissue engineering,etc.展开更多
文摘The analysis was made over the leukograms of leukocyte concentrate in venous blood of healthy people (77 persons) and a group consisting from 18 persons with hybrid cells (LE-phenomenon) detected in them. Authors constructed in vitro processes, which take place in vivo, and got the artificial morphological analogue of LE-cells through a physical and chemical agent--polyethylene glycol. The suggestion was made that the formation of hybrid cells in vivo (on the example of lupus erythematosus) depends on a contact of examinee with ecological toxicants.
基金supported by the National Natural Science Foundation of China,No.81971105(to ZNG)the Science and Technology Department of Jilin Province,No.YDZJ202201ZYTS677(to ZNG)+3 种基金Talent Reserve Program of the First Hospital of Jilin University,No.JDYYCB-2023002(to ZNG)the Norman Bethune Health Science Center of Jilin University,No.2022JBGS03(to YY)Science and Technology Department of Jilin Province,Nos.YDZJ202302CXJD061,20220303002SF(to YY)Jilin Provincial Key Laboratory,No.YDZJ202302CXJD017(to YY).
文摘Ischemic stroke is a major cause of mortality and disability worldwide,with limited treatment options available in clinical practice.The emergence of stem cell therapy has provided new hope to the field of stroke treatment via the restoration of brain neuron function.Exogenous neural stem cells are beneficial not only in cell replacement but also through the bystander effect.Neural stem cells regulate multiple physiological responses,including nerve repair,endogenous regeneration,immune function,and blood-brain barrier permeability,through the secretion of bioactive substances,including extracellular vesicles/exosomes.However,due to the complex microenvironment of ischemic cerebrovascular events and the low survival rate of neural stem cells following transplantation,limitations in the treatment effect remain unresolved.In this paper,we provide a detailed summary of the potential mechanisms of neural stem cell therapy for the treatment of ischemic stroke,review current neural stem cell therapeutic strategies and clinical trial results,and summarize the latest advancements in neural stem cell engineering to improve the survival rate of neural stem cells.We hope that this review could help provide insight into the therapeutic potential of neural stem cells and guide future scientific endeavors on neural stem cells.
基金Supported by the National Natural Science Foundation,China,No.82272568,81902247,and 32201013Natural Science Foundation of Shandong Province,China,No.ZR2021QH275+1 种基金Natural Science Foundation of Jinan City,China,No.202225070Guangdong Basic and Applied Basic Research Foundation,China,No.2022A1515220056.
文摘BACKGROUND Mesenchymal stem cells(MSCs)modulated by various exogenous signals have been applied extensively in regenerative medicine research.Notably,nanosecond pulsed electric fields(nsPEFs),characterized by short duration and high strength,significantly influence cell phenotypes and regulate MSCs differentiation via multiple pathways.Consequently,we used transcriptomics to study changes in messenger RNA(mRNA),long noncoding RNA(lncRNA),microRNA(miRNA),and circular RNA expression during nsPEFs application.AIM To explore gene expression profiles and potential transcriptional regulatory mechanisms in MSCs pretreated with nsPEFs.METHODS The impact of nsPEFs on the MSCs transcriptome was investigated through whole transcriptome sequencing.MSCs were pretreated with 5-pulse nsPEFs(100 ns at 10 kV/cm,1 Hz),followed by total RNA isolation.Each transcript was normalized by fragments per kilobase per million.Fold change and difference significance were applied to screen the differentially expressed genes(DEGs).Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to elucidate gene functions,complemented by quantitative polymerase chain reaction verification.RESULTS In total,263 DEGs were discovered,with 92 upregulated and 171 downregulated.DEGs were predominantly enriched in epithelial cell proliferation,osteoblast differentiation,mesenchymal cell differentiation,nuclear division,and wound healing.Regarding cellular components,DEGs are primarily involved in condensed chromosome,chromosomal region,actin cytoskeleton,and kinetochore.From aspect of molecular functions,DEGs are mainly involved in glycosaminoglycan binding,integrin binding,nuclear steroid receptor activity,cytoskeletal motor activity,and steroid binding.Quantitative real-time polymerase chain reaction confirmed targeted transcript regulation.CONCLUSION Our systematic investigation of the wide-ranging transcriptional pattern modulated by nsPEFs revealed the differential expression of 263 mRNAs,2 miRNAs,and 65 lncRNAs.Our study demonstrates that nsPEFs may affect stem cells through several signaling pathways,which are involved in vesicular transport,calcium ion transport,cytoskeleton,and cell differentiation.
文摘Cell therapy approaches that employ engineered mam-malian cells for on-demand production of therapeutic agents in the patient's body are moving beyond proof-of-concept in translational medicine.The therapeutic cells can be customized to sense user-defined signals,pro-cess them,and respond in a programmable and pre-dictable way.In this paper,we introduce the available tools and strategies employed to design therapeutic cells.Then,various approaches to control cell behav-iors,including open-loop and closed-loop systems,are discussed.We also highlight therapeutic applications of engineered cells for early diagnosis and treatment of various diseases in the clinic and in experimental dis-ease models.Finally,we consider emerging technolo-gies such as digital devices and their potential for incorporation into future cell-based therapies.
基金The Deanship of Scientific Research (DSR)at King Abdulaziz University (KAU),Jeddah,Saudi Arabia has funded this project,under Grant No.KEP-1–120–42.
文摘White blood cells (WBC) or leukocytes are a vital component ofthe blood which forms the immune system, which is accountable to fightforeign elements. The WBC images can be exposed to different data analysisapproaches which categorize different kinds of WBC. Conventionally, laboratorytests are carried out to determine the kind of WBC which is erroneousand time consuming. Recently, deep learning (DL) models can be employedfor automated investigation of WBC images in short duration. Therefore,this paper introduces an Aquila Optimizer with Transfer Learning basedAutomated White Blood Cells Classification (AOTL-WBCC) technique. Thepresented AOTL-WBCC model executes data normalization and data augmentationprocess (rotation and zooming) at the initial stage. In addition,the residual network (ResNet) approach was used for feature extraction inwhich the initial hyperparameter values of the ResNet model are tuned by theuse of AO algorithm. Finally, Bayesian neural network (BNN) classificationtechnique has been implied for the identification of WBC images into distinctclasses. The experimental validation of the AOTL-WBCC methodology isperformed with the help of Kaggle dataset. The experimental results foundthat the AOTL-WBCC model has outperformed other techniques which arebased on image processing and manual feature engineering approaches underdifferent dimensions.
基金supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases,and National Institute of Dental and Craniofacial Research under Award Numbers AR061052,AR066101 and DE023105 to S.Y
文摘Presently, there is a high paucity of bone grafts in the United States and worldwide. Regenerating bone is of prime concern due to the current demand of bone grafts and the increasing number of diseases causing bone loss. Autogenous bone is the present gold standard of bone regeneration. However, disadvantages like donor site morbidity and its decreased availability limit its use. Even allografts and synthetic grafting materials have their own limitations. As certain specific stem cells can be directed to differentiate into an osteoblastic lineage in the presence of growth factors(GFs), it makes stem cells the ideal agents for bone regeneration.Furthermore, platelet-rich plasma(PRP), which can be easily isolated from whole blood, is often used for bone regeneration, wound healing and bone defect repair. When stem cells are combined with PRP in the presence of GFs, they are able to promote osteogenesis. This review provides in-depth knowledge regarding the use of stem cells and PRP in vitro, in vivo and their application in clinical studies in the future.
文摘Tooth loss compromises human oral health. Although several prosthetic methods, such as artificial denture and dental implants, are clinical therapies to tooth loss problems, they are thought to have safety and usage time issues. Recently, tooth tissue engineering has attracted more and more attention. Stem cell based tissue engineering is thought to be a promising way to replace the missing tooth. Mesenchymal stem cells (MSCs) are multipotent stem cells which can differentiate into a variety of cell types. The potential MSCs for tooth regeneration mainly include stem cells from human exfoliated deciduous teeth (SHEDs), adult dental pulp stem cells (DPSCs), stem cells from the apical part of the papilla (SCAPs), stem cells from the dental follicle (DFSCs), periodontal ligament stem cells (PDLSCs) and bone marrow derived mesenchymal stem cells (BMSCs). This review outlines the recent progress in the mesenchymal stem cells used in tooth regeneration.
文摘Knee osteoarthritis (OA) is the most common form of arthritis worldwide. The incidence of this disease is rising and its treatment poses an economic burden. Two early targets of knee OA treatment include the predominant symptom of pain, and cartilage damage in the knee joint. Current treatments have been beneficial in treating the disease but none is as effective as total knee arthroplasty (TKA). However, while TKA is an end-stage solution of the disease, it is an invasive and expensive procedure, Therefore, innovative regenerative engineering strategies should be established as these could defer or annul the need for a TKA. Several biomaterial and cell-based therapies are currently in development and have shown early promise in both preclinical and clinical studies. The use of advanced biomaterials and stem cells independently or in conjunction to treat knee OA could potentially reduce pain and regenerate fo- cal articular cartilage damage. In this review, we discuss the pathogenesis of pain and cartilage damage in knee OA and explore novel treatment options currently being studied, along with some of their limitations.
基金supported by NIH R01 DE14190 and R21 DE22625 (HX)National Science Foundation of China 31100695 and 31328008 (LZ), 81401794 (PW)Maryland Stem Cell Research Fund and University of Maryland School of Dentistry
文摘Tissue engineering is promising to meet the increasing need for bone regeneration. Nanostructured calcium phosphate (CAP) biomaterials/scaffolds are of special interest as they share chemical/crystallographic similarities to inorganic components of bone. Three applications of nano-CaP are discussed in this review: nanostructured calcium phosphate cement (CPC); nano-CaP composites; and nano-CaP coatings. The interactions between stem cells and nano-CaP are highlighted, including cell attachment, orientation/ morphology, differentiation and in vivo bone regeneration. Several trends can be seen: (i) nano-CaP biomaterials support stem cell attachment/proliferation and induce osteogenic differentiation, in some cases even without osteogenic supplements; (ii) the influence of nano-CaP surface patterns on cell alignment is not prominent due to non-uniform distribution of nano-crystals; (iii) nano-CaP can achieve better bone regeneration than conventional CaP biomaterials; (iv) combining stem cells with nano-CaP accelerates bone regeneration, the effect of which can be further enhanced by growth factors; and (v) cell microencapsulation in nano-CaP scaffolds is promising for bone tissue engineering. These understandings would help researchers to further uncover the underlying mechanisms and interactions in nano-CaP stem cell constructs in vitro and in vivo, tailor nano-CaP composite construct design and stem cell type selection to enhance cell function and bone regeneration, and translate laboratory findings to clinical treatments.
基金the financial support from the Institute for Critical Technology and Applied Science(ICTAS)the financial support from Office of Naval Research(I.Perez)through grant number N000141613043the supports of National Natural Science Foundation of China under grant no.61604152
文摘The energy barrier at the CH3NH3Pb Br3/TiO2interface hinders the electron transfer from CH3NH3Pb Br3to compact TiO2(cp-TiO2).Ionic liquid(IL),that forms dipoles pointing away from TiO2,can adjust the work function of TiO2resulting in suitable energy level for charge transfer from CH3NH3Pb Br3to TiO2.The time-resolved photoluminescence spectroscopy(TRPL)measurements confirm faster electron transfer from the CH3NH3Pb Br3film to TiO2after modification by IL.Solar cells based on IL modified cp-TiO2demonstrate efficiency of~6%,much higher than the devices(0.2%)fabricated using untreated cp-TiO2as the electron transport layer.
基金Supported by Wuhan University of Science and Technology Startup Fund(Chu Tian Scholars Program),No.XZ2020024Open Laboratory Fund from Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration,No.2022kqhm005Hubei Provincial Health and Health Commission Research Project,No.WJ2023M121。
文摘Peripheral nerve injury(PNI)seriously affects people’s quality of life.Stem cell therapy is considered a promising new option for the clinical treatment of PNI.Dental stem cells,particularly dental pulp stem cells(DPSCs),are adult pluripotent stem cells derived from the neuroectoderm.DPSCs have significant potential in the field of neural tissue engineering due to their numerous advantages,such as easy isolation,multidifferentiation potential,low immunogenicity,and low transplant rejection rate.DPSCs are extensively used in tissue engineering and regenerative medicine,including for the treatment of sciatic nerve injury,facial nerve injury,spinal cord injury,and other neurodegenerative diseases.This article reviews research related to DPSCs and their advantages in treating PNI,aiming to summarize the therapeutic potential of DPSCs for PNI and the underlying mechanisms and providing valuable guidance and a foundation for future research.
基金supported by National Natural Science Foundation of China(Nos.92068110,81973272 and 92068111)Shanghai Science and Technology Committee(Nos.20JC1411800,and 23S41900100,China)+4 种基金Programs of Shanghai Academic/Technology Research Leader(Nos.21XD1400200 and 21XD1422200,China)Innovation Program of Shanghai Municipal Education Commission(2023ZKZD21,China)the fund of Research Grant for Health Science and Technology of Shanghai Municipal Commission of Health Committee(No.20214Y0268,China)Science and Technology Development Fund of Shanghai Pudong New Area(No.PKJ2020-Y49,China)the Project of Key Medical Specialty and Treatment Center of Pudong Hospital of Fudan University(No.Zdzk2020-15,China)。
文摘Mesenchymal stem cells(MSCs)experience substantial viability issues in the stroke infarct region,limiting their therapeutic efficacy and clinical translation.High levels of deadly reactive oxygen radicals(ROS)and proinflammatory cytokines(PC)in the infarct milieu kill transplanted MSCs,whereas low levels of beneficial ROS and PC stimulate and improve engrafted MSCs’viability.Based on the intrinsic hormesis effects in cellular biology,we built a microglia-inspired MSC bioengineering system to transform detrimental high-level ROS and PC into vitality enhancers for strengthening MSC therapy.This system is achieved by bioorthogonally arming metabolic glycoengineered MSCs with microglial membrane-coated nanoparticles and an antioxidative extracellular protective layer.In this system,extracellular ROSscavenging and PC-absorbing layers effectively buffer the deleterious effects and establish a microlivable niche at the level of a single MSC for transplantation.Meanwhile,the infarct’s inanimate milieu is transformed at the tissue level into a new living niche to facilitate healing.The engineered MSCs achieved viability five times higher than natural MSCs at seven days after transplantation and exhibited a superior therapeutic effect for stroke recovery up to 28 days.This vitality-augmented system demonstrates the potential to accelerate the clinical translation of MSC treatment and boost stroke recovery.
基金the EU for providing support to these activities through the EU projects DECADE(862030),EPOCH(101070976)and SCOPE(810182)。
文摘This future article discusses the new prospects and directions of CO_(2)conversion via the photo-electrocatalytic(PEC)route.The second(2nd)generation solar fuels and chemicals(SFs)are generated directly in PEC systems via electrons/protons reactions without forming molecular H_(2)as an intermediate,overcoming the thermodynamics limitations and practical issues encountered for electro-fuels produced by multistep thermocatalytic processes(i.e.CO_(2)conversion with H_(2)coming from water electrolysis).A distributed and decentralized production of SFs requires very compact,highly integrated,and intensified technologies.Among the existing reactors of advanced design(based on artificial leaves or photosynthesis),the integrated photovoltaic plus electrocatalytic(PV-EC)device is the only system(demonstrated at large scale)to produce SFs with high solar-to-fuel(STF)efficiency.However,while the literature indicates STF efficiency as the main(and only)measure of process performance,we remark here the need to refer to productivity(in terms of current density)and make tests with reliable flow PEC systems(with electrodes of at least 5–10 cm^(2))to accelerate the scaling-up process.Using approaches that minimize downstream separation costs is also mandatory.Many limitations exist in PEC systems,but most can be overcome by proper electrode and cell engineering,thus going beyond the properties of the electrocatalysts.As examples of current developments,we present the progress of(i)artificial leaf/tree devices for green H_(2)distributed production and(ii)a PEC device producing the same chemicals at both cathode and anode parts without downstream operations for green solvent distributed production.Based on these developments,future directions,such as producing fertilizers and food components from the air,are outlined.The aim is to provide new ideas and research directions from a personal perspective.
文摘Gastric cancer,a prevalent malignancy worldwide,ranks sixth in terms of frequency and third in fatality,causing over a million new cases and 769000 annual deaths.Predominant in Eastern Europe and Eastern Asia,risk factors include family medical history,dietary habits,tobacco use,Helicobacter pylori,and Epstein-Barr virus infections.Unfortunately,gastric cancer is often diagnosed at an advanced stage,leading to a grim prognosis,with a 5-year overall survival rate below 5%.Surgical intervention,particularly with D2 Lymphadenectomy,is the mainstay for early-stage cases but offers limited success.For advanced cases,the National Comprehensive Cancer Network recommends chemotherapy,radiation,and targeted therapy.Emerging immunotherapy presents promise,especially for unresectable or metastatic cases,with strategies like immune checkpoint inhibitors,tumor vaccines,adoptive immunotherapy,and nonspecific immunomodulators.In this Editorial,with regards to the article“Advances and key focus areas in gastric cancer immunotherapy:A comprehensive scientometric and clinical trial review”,we address the advances in the field of immunotherapy in gastric cancer and its future prospects.
基金the financial support from the National Natural Science Foundation of China(Nos.21621004,21961132005,21908160 and 21422605)the Qingdao National Laboratory for Marine Science and Technology(QNLM2016ORP0407)+1 种基金the Tianjin Natural Science Foundation(18JCYBJC29500)the China Postdoctoral Science Foundation(2019M651041)。
文摘Cryoprotectants play a key role in cell cryopreservation because they can reduce cryoinjuries to cells associated with ice formation.To meet the clinical requirements of cryopreserved cells,cryoprotectants should be biocompatible,highly efficient and easily removable from cryopreserved cells.However,integration of these properties into one cryoprotectant still remains challenging.Herein,three biocompatible neutral amino acids,includingβ-alanine,γ-aminobutyric acid andε-aminocaproic acid,are first reported to have the potential as such ideal cryoprotectants.The results demonstrate that they can inhibit ice formation and reduce osmotic stress to provide extracellular and intracellular protection,thereby ensuring high cryopreservation efficiency for both anuclear and nucleated cells.More importantly,due to the remarkable osmotic regulation ability,the neutral amino acids can be rapidly removed from cryopreserved cells via a one-step method without causing observable damage to cells,superior to the current state-of-the-art cryoprotectants—dimethyl sulfoxide and glycerol.This work provides a new perspective to develop novel cryoprotectants,which may have dramatic impacts on solvent-free cryopreservation technology to support the cell-based applications,such as cell therapy and tissue engineering,etc.