Resistance to cancer immunotherapy is mainly attributed to poor tumor immunogenicity as well as the immunosuppressive tumor microenvironment(TME)leading to failure of immune response.Numerous therapeutic strategies in...Resistance to cancer immunotherapy is mainly attributed to poor tumor immunogenicity as well as the immunosuppressive tumor microenvironment(TME)leading to failure of immune response.Numerous therapeutic strategies including chemotherapy,radiotherapy,photodynamic,photothermal,magnetic,chemodynamic,sonodynamic and oncolytic therapy,have been developed to induce immunogenic cell death(ICD)of cancer cells and thereby elicit immunogenicity and boost the antitumor immune response.However,many challenges hamper the clinical application of ICD inducers resulting in modest immunogenic response.Here,we outline the current state of using nanomedicines for boosting ICD of cancer cells.Moreover,synergistic approaches used in combination with ICD inducing nanomedicines for remodeling the TME via targeting immune checkpoints,phagocytosis,macrophage polarization,tumor hypoxia,autophagy and stromal modulation to enhance immunogenicity of dying cancer cells were analyzed.We further highlight the emerging trends of using nanomaterials for triggering amplified ICD-mediated antitumor immune responses.Endoplasmic reticulum localized ICD,focused ultrasound hyperthermia,cell membrane camouflaged nanomedicines,amplified reactive oxygen species(ROS)generation,metallo-immunotherapy,ion modulators and engineered bacteria are among the most innovative approaches.Various challenges,merits and demerits of ICD inducer nanomedicines were also discussed with shedding light on the future role of this technology in improving the outcomes of cancer immunotherapy.展开更多
The complex physiological and pathological conditions form barriers against efficient drug delivery.Cell penetrating peptides(CPPs),a class of short peptides which translocate drugs across cell membranes with various ...The complex physiological and pathological conditions form barriers against efficient drug delivery.Cell penetrating peptides(CPPs),a class of short peptides which translocate drugs across cell membranes with various mechanisms,provide feasible solutions for efficient delivery of biologically active agents to circumvent biological barriers.After years of development,the function of CPPs is beyond cell penetrating.Multifunctional CPPs with bioactivity or active targeting capacity have been designed and successfully utilized in delivery of various cargoes against tumor,myocardial ischemia,ocular posterior segment disorders,etc.In this review,we summarize recent progress in CPP-functionalized nano-drug delivery systems to overcome the physiological and pathological barriers for the applications in cardiology,ophtalmology,mucus,neurology and cancer,etc.We also highlight the prospect of clinical translation of CPP-functionalized drug delivery systems in these areas.展开更多
Cancer stem cells(CSCs) constitute a small proportion of the cancer cells that have self-renewal capacity and tumor-initiating ability.They have been identified in a variety of tumors,including tumors of the digestive...Cancer stem cells(CSCs) constitute a small proportion of the cancer cells that have self-renewal capacity and tumor-initiating ability.They have been identified in a variety of tumors,including tumors of the digestive system.CSCs exhibit some unique characteristics,which are responsible for cancer metastasis and recurrence.Consequently,the development of effective therapeutic strategies against CSCs plays a key role in increasing the efficacy of cancer therapy.Several potential approaches to target CSCs of the digestive system have been explored,including targeting CSC surface markers and signaling pathways,inducing the differentiation of CSCs,altering the tumor microenvironment or niche,and inhibiting ATP-driven efflux transporters.However,conventional therapies may not successfully eradicate CSCs owing to various problems,including poor solubility,stability,rapid clearance,poor cellular uptake,and unacceptable cytotoxicity.Nanomedicine strategies,which include drug,gene,targeted,and combinational delivery,could solve these problems and significantly improve the therapeutic index.This review briefly summarizes the ongoing development of strategies and nanomedicine-based therapies against CSCs of the digestive system.展开更多
Nanopharmaceuticals containing quantum dot nanoparticles (Q-Dot NPs) for treating serious cancers such as breast cancer have made fantastic proposals. In this study, ZnO quantum dot NPs are formulated via ZnO@PVP nano...Nanopharmaceuticals containing quantum dot nanoparticles (Q-Dot NPs) for treating serious cancers such as breast cancer have made fantastic proposals. In this study, ZnO quantum dot NPs are formulated via ZnO@PVP nanopolymer as co-assistants coordinating with efficacious suitable wetting agents, PEG-binding compound, and W/O emulsifier for producing eco-friendly water-based nanodrug. Several characterization techniques containing SEM, TEM, FTIR, photoluminescence, zeta potential, and UV-Vis absorption were employed for ZnO Q-Dot NPs in nanodrug. This work aims to investigate the anti-tumor effects of such nanomedicine on the 4T1 breast cancer cell line in BALB/c mice, being elaborated through intraperitoneal, injection (IVP) and oral therapy. The impressive findings showed that ZnO nanodrug caused changes in blood factors, having the most effectiveness at 40 μg/ml concentration after two weeks of oral treatments. The significant increase in white blood cells (WBC) neutrophils and meaningful decreases in lymphocytes and especially cholesterol were powerful simultaneous impacts, successfully treating malignant breast cancer masses. In this significant animal model research for breast cancer, the sick mice recovered entirely and even had a safe space to mate. Histopathological results showed no evidence of breast tumor formation or metastasis in the group treated with nanodrug and their children. This nanomedicine has a therapeutic effect, and is ready to be applied for treating volunteer breast cancer patients. However, its prevention (inhibitory) effect can also be analyzed and added to current data in future studies.展开更多
Cancer immunotherapies, which train the natural immune system to specifically kill tumor cells while sparing the healthy cells,have helped revolutionize cancer treatments and demonstrated promising clinical therapeuti...Cancer immunotherapies, which train the natural immune system to specifically kill tumor cells while sparing the healthy cells,have helped revolutionize cancer treatments and demonstrated promising clinical therapeutic benefits for decades. However, the therapeutic outcome of immunotherapies, even for the most successful immune checkpoint blockade(ICB) therapy, remains unsatisfactory in the clinical practice, mainly due to the low immunogenicity of solid tumors and its immunosuppressive tumor microenvironment(TME). Notably, several cancer treatment modalities, including chemotherapy, radiotherapy, and phototherapy, have been revealed to evoke tumor immunogenicity and reverse immunosuppressive TME via inducing immunogenic cell death(ICD) of tumor cells, which synergistically sensitized tumors to ICB therapy. Nanomedicines have been extensively applied to augment ICD-inducing treatment modalities and potentiate ICB therapeutic efficacy therapy due to the opportune convergence of immunotherapy and nanotechnology. Here, we discuss the recent advances in nanomedicine-mediated ICD and its combination with ICB therapy.展开更多
Tumor metastasis,the apex of cancer progression,poses a formidable challenge in therapeutic endeavors.Circulating tumor cells(CTCs),resilient entities originating from primary tumors or their metastases,significantly ...Tumor metastasis,the apex of cancer progression,poses a formidable challenge in therapeutic endeavors.Circulating tumor cells(CTCs),resilient entities originating from primary tumors or their metastases,significantly contribute to this process by demonstrating remarkable adaptability.They survive shear stress,resist anoikis,evade immune surveillance,and thwart chemotherapy.This comprehensive review aims to elucidate the intricate landscape of CTC formation,metastatic mechanisms,and the myriad factors influencing their behavior.Integral signaling pathways,such as integrin-related signaling,cellular autophagy,epithelial-mesenchymal transition,and interactions with platelets,are examined in detail.Furthermore,we explore the realm of precision nanomedicine design,with a specific emphasis on the anoikis‒platelet interface.This innovative approach strategically targets CTC survival mechanisms,offering promising avenues for combatting metastatic cancer with unprecedented precision and efficacy.The review underscores the indispensable role of the rational design of platelet-based nanomedicine in the pursuit of restraining CTC-driven metastasis.展开更多
Since the recognition of disease molecular basis,it has become clear that the keystone moments of medical practice,namely early diagnosis,appropriate therapeutic treatment and patient follow-up,must be approached at a...Since the recognition of disease molecular basis,it has become clear that the keystone moments of medical practice,namely early diagnosis,appropriate therapeutic treatment and patient follow-up,must be approached at a molecular level.These objectives will be in the near future more effectively achievable thanks to the impressive developments in nanotechnologies and their applications to the biomedical field,starting-up the nanomedicine era.The continuous advances in the development of biocompatible smart nanomaterials,in particular,will be crucial in several aspects of medicine.In fact,the possibility of manufacturing nanoparticle contrast agents that can be selectively targeted to specific pathological cells has extended molecular im-aging applications to non-ionizing techniques and,at the same time,has made reachable the perspective of combining highly accurate diagnoses and personalized therapies in a single theranostic intervention.Main developing applications of nanosized theranostic agents include targeted molecular imaging,controlled drug release,therapeutic monitoring,guidance of radiationbased treatments and surgical interventions.Here we will review the most recent findings in nanoparticles contrast agents and their applications in the field of cancer molecular imaging employing non-ionizing techniques and disease-specific contrast agents,with special focus on recent findings on those nanomaterials particularly promising for ultrasound molecular imaging and simultaneous treatment of cancer.展开更多
In this investigation, the anticancer potentiality and biological mechanism of gold nanoparticles (AuNPs) was studied in SUDHL-4 cell line. Metallic AuNPs were prepared and stabilized with ethanol clove (Syzygium arom...In this investigation, the anticancer potentiality and biological mechanism of gold nanoparticles (AuNPs) was studied in SUDHL-4 cell line. Metallic AuNPs were prepared and stabilized with ethanol clove (Syzygium aromaticum) extract. The green synthesis of AuNPs was characterized and evaluated by UV-Visible Spectroscopic, X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Transmission electron microscopy (TEM), Dynamic Light Scattering (DLS) and biological activities using various biochemical assays. Green synthesis of AuNPs was confirmed by instrument method. The TEM images show polydis-perse, mostly spherical AuNPs particles of 12 - 20 nm. AuNPs were decreased the growth and viability of SU-DHL-4 cell line and increased the apoptosis. The treatments of SU-DHL-4 cells with AuNPs resulted in a moderate considerably increase in Reactive oxygen species (ROS) production. We measured apoptosis by Annexin-V/propidium iodide (PI) in the existence and nonexistence of the antioxidant N-acetyl-L-cysteine (NAC), the glutathione-depleting agent buthionine sulfoximine (BSO), or caspase inhibitors to determine the mechanism of cell death. AuNPs are unique potential anticancer agents that cause ROS-dependent apoptosis in SUDHL-4 cell line which was improved by depletion of glutathione (GHS) and inhibited by N-acetyl-L-cysteine on Z-VAD-FMK.展开更多
Cancer is a leading cause of death worldwide.Nowadays,the therapies are inadequate and spur demand for improved technologies.Rapid growth in nanotechnology and novel nanomedicine products represents an opportunity to ...Cancer is a leading cause of death worldwide.Nowadays,the therapies are inadequate and spur demand for improved technologies.Rapid growth in nanotechnology and novel nanomedicine products represents an opportunity to achieve sophisticated targeting strategies and multi-functionality.Nanomedicine is increasingly used to develop new cancer diagnosis and treatment methods since this technology can modulate the biodistribution and the target site accumulation of chemotherapeutic drugs,thereby reducing their toxicity.Cancer nanotechnology and cancer immunotherapy are two parallel themes that have emerged over the last few decades while searching for a cure for cancer.Immunotherapy is revolutionizing cancer treatment,as it can achieve unprecedented responses in advanced-stage patients,including complete cures and long-term survival.A deeper understanding of the human immune system allows the establishment of combination regimens in which immunotherapy is combined with other treatment modalities(as in the case of the nanodrug Ferumoxytol).Furthermore,the combination of gene therapy approaches with nanotechnology that aims to silence or express cancer-relevant genes via one-time treatment is gradually progressing from bench to bedside.The most common example includes lipidbased nanoparticles that target VEGF-Αand KRAS pathways.This review focuses on nanoparticle-based platforms utilized in recent advances aiming to increase the efficacy of currently available cancer therapies.The insights provided and the evidence obtained in this paper indicate a bright future ahead for immunooncology applications of engineering nanomedicines.展开更多
Background:Immunosuppressive M2 macrophages in the tumor microenvironment(TME)can mediate the therapeutic resistance of tumors,and seriously affect the clinical efficacy and prognosis of tumor patients.This study aims...Background:Immunosuppressive M2 macrophages in the tumor microenvironment(TME)can mediate the therapeutic resistance of tumors,and seriously affect the clinical efficacy and prognosis of tumor patients.This study aims to develop a novel drug delivery system for dual-targeting tumor and macrophages to inhibit tumor and induce macrophage polarization.Methods:The anti-tumor effects of methyltransferase like 14(METTL14)were investigated both in vitro and in vivo.The underlying mechanisms of METTL14 regulating macrophages were also explored in this study.We further constructed the cyclic(Arg-Gly-Asp)(cRGD)peptide modified macrophage membrane-coated nanovesicles to co-deliver METTL14 and the TLR4 agonist.Results:We found that METTL14 significantly inhibits the growth of tumor in vitro.METTL14 might downregulate TICAM2 and inhibit the Toll-like receptor 4(TLR4)pathway of macrophages,meanwhile,the combination of METTL14 and the TLR4 agonist could induce M1 polarization of macrophages.Macrophage membrane-coated nanovesicles are characterized by easy modification,drug loading,and dual-targeting tumor and macrophages,and cRGD modification can further enhance its targeting ability.It showed that the nanovesicles could improve the in vivo stability of METTL14,and dual-target tumor and macrophages to inhibit tumor and induce M1 polarization of macrophages.Conclusions:This study anticipates achieving the dual purposes of tumor inhibition and macrophage polarization,and providing a new therapeutic strategy for tumors.展开更多
Traditional surgical treatment is difficult to thoroughly remove esophageal squamous cell carcinomas(ESCC),postoperative recurrence caused by residual tumor cells is a critical factor in the poor prognosis.Since surgi...Traditional surgical treatment is difficult to thoroughly remove esophageal squamous cell carcinomas(ESCC),postoperative recurrence caused by residual tumor cells is a critical factor in the poor prognosis.Since surgical resection promotes the local angiogenesis at the tumor site,further exacerbating the proliferation and invasion of residual tumor cells,it is urgent to inhibit angiogenesis after surgery.Here,a functional peptide-based nanomedicine was obtained from peptide–drug conjugates,which are composed of a hydrophilic targeting motif(vascular endothelial growth factor family and their receptors(VEGFR)targeting peptide for anti-angiogenesis),an ester-linked hydrophobic oridonin(ORI).The nanomedicine exhibits esterase-catalyzed disassembly and drug release,significantly enhanced the anti-tumor efficacy of chemotherapeutics in a postoperative tumor recurrence model through synergistic anti-angiogenic strategies.This study provides an integrated solution for anti-angiogenesisaugmented chemotherapy and demonstrates the encouraging potential for postoperative treatment.展开更多
文摘Resistance to cancer immunotherapy is mainly attributed to poor tumor immunogenicity as well as the immunosuppressive tumor microenvironment(TME)leading to failure of immune response.Numerous therapeutic strategies including chemotherapy,radiotherapy,photodynamic,photothermal,magnetic,chemodynamic,sonodynamic and oncolytic therapy,have been developed to induce immunogenic cell death(ICD)of cancer cells and thereby elicit immunogenicity and boost the antitumor immune response.However,many challenges hamper the clinical application of ICD inducers resulting in modest immunogenic response.Here,we outline the current state of using nanomedicines for boosting ICD of cancer cells.Moreover,synergistic approaches used in combination with ICD inducing nanomedicines for remodeling the TME via targeting immune checkpoints,phagocytosis,macrophage polarization,tumor hypoxia,autophagy and stromal modulation to enhance immunogenicity of dying cancer cells were analyzed.We further highlight the emerging trends of using nanomaterials for triggering amplified ICD-mediated antitumor immune responses.Endoplasmic reticulum localized ICD,focused ultrasound hyperthermia,cell membrane camouflaged nanomedicines,amplified reactive oxygen species(ROS)generation,metallo-immunotherapy,ion modulators and engineered bacteria are among the most innovative approaches.Various challenges,merits and demerits of ICD inducer nanomedicines were also discussed with shedding light on the future role of this technology in improving the outcomes of cancer immunotherapy.
基金the financial support of the National Natural Science Foundation (82173771)Fundamental Research Funds for the Central Universities and 111 project (B18035)
文摘The complex physiological and pathological conditions form barriers against efficient drug delivery.Cell penetrating peptides(CPPs),a class of short peptides which translocate drugs across cell membranes with various mechanisms,provide feasible solutions for efficient delivery of biologically active agents to circumvent biological barriers.After years of development,the function of CPPs is beyond cell penetrating.Multifunctional CPPs with bioactivity or active targeting capacity have been designed and successfully utilized in delivery of various cargoes against tumor,myocardial ischemia,ocular posterior segment disorders,etc.In this review,we summarize recent progress in CPP-functionalized nano-drug delivery systems to overcome the physiological and pathological barriers for the applications in cardiology,ophtalmology,mucus,neurology and cancer,etc.We also highlight the prospect of clinical translation of CPP-functionalized drug delivery systems in these areas.
文摘Cancer stem cells(CSCs) constitute a small proportion of the cancer cells that have self-renewal capacity and tumor-initiating ability.They have been identified in a variety of tumors,including tumors of the digestive system.CSCs exhibit some unique characteristics,which are responsible for cancer metastasis and recurrence.Consequently,the development of effective therapeutic strategies against CSCs plays a key role in increasing the efficacy of cancer therapy.Several potential approaches to target CSCs of the digestive system have been explored,including targeting CSC surface markers and signaling pathways,inducing the differentiation of CSCs,altering the tumor microenvironment or niche,and inhibiting ATP-driven efflux transporters.However,conventional therapies may not successfully eradicate CSCs owing to various problems,including poor solubility,stability,rapid clearance,poor cellular uptake,and unacceptable cytotoxicity.Nanomedicine strategies,which include drug,gene,targeted,and combinational delivery,could solve these problems and significantly improve the therapeutic index.This review briefly summarizes the ongoing development of strategies and nanomedicine-based therapies against CSCs of the digestive system.
文摘Nanopharmaceuticals containing quantum dot nanoparticles (Q-Dot NPs) for treating serious cancers such as breast cancer have made fantastic proposals. In this study, ZnO quantum dot NPs are formulated via ZnO@PVP nanopolymer as co-assistants coordinating with efficacious suitable wetting agents, PEG-binding compound, and W/O emulsifier for producing eco-friendly water-based nanodrug. Several characterization techniques containing SEM, TEM, FTIR, photoluminescence, zeta potential, and UV-Vis absorption were employed for ZnO Q-Dot NPs in nanodrug. This work aims to investigate the anti-tumor effects of such nanomedicine on the 4T1 breast cancer cell line in BALB/c mice, being elaborated through intraperitoneal, injection (IVP) and oral therapy. The impressive findings showed that ZnO nanodrug caused changes in blood factors, having the most effectiveness at 40 μg/ml concentration after two weeks of oral treatments. The significant increase in white blood cells (WBC) neutrophils and meaningful decreases in lymphocytes and especially cholesterol were powerful simultaneous impacts, successfully treating malignant breast cancer masses. In this significant animal model research for breast cancer, the sick mice recovered entirely and even had a safe space to mate. Histopathological results showed no evidence of breast tumor formation or metastasis in the group treated with nanodrug and their children. This nanomedicine has a therapeutic effect, and is ready to be applied for treating volunteer breast cancer patients. However, its prevention (inhibitory) effect can also be analyzed and added to current data in future studies.
基金supported by the National Natural Science Foundation of China (Grant Nos. U22A20156, 52173121)the Open Project of Guangdong Province Key Laboratory of Biomedical Engineering (Grant No. GDKLBEM202203)。
文摘Cancer immunotherapies, which train the natural immune system to specifically kill tumor cells while sparing the healthy cells,have helped revolutionize cancer treatments and demonstrated promising clinical therapeutic benefits for decades. However, the therapeutic outcome of immunotherapies, even for the most successful immune checkpoint blockade(ICB) therapy, remains unsatisfactory in the clinical practice, mainly due to the low immunogenicity of solid tumors and its immunosuppressive tumor microenvironment(TME). Notably, several cancer treatment modalities, including chemotherapy, radiotherapy, and phototherapy, have been revealed to evoke tumor immunogenicity and reverse immunosuppressive TME via inducing immunogenic cell death(ICD) of tumor cells, which synergistically sensitized tumors to ICB therapy. Nanomedicines have been extensively applied to augment ICD-inducing treatment modalities and potentiate ICB therapeutic efficacy therapy due to the opportune convergence of immunotherapy and nanotechnology. Here, we discuss the recent advances in nanomedicine-mediated ICD and its combination with ICB therapy.
基金funded by Tianjin University of Traditional Chinese Medicine Startup Funding to Yunfei Li,and supported by Open Projects Fund of Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology,Shandong University(No.2023CCG13,China)funded by National Natural Science Foundation of China(No.82074030).
文摘Tumor metastasis,the apex of cancer progression,poses a formidable challenge in therapeutic endeavors.Circulating tumor cells(CTCs),resilient entities originating from primary tumors or their metastases,significantly contribute to this process by demonstrating remarkable adaptability.They survive shear stress,resist anoikis,evade immune surveillance,and thwart chemotherapy.This comprehensive review aims to elucidate the intricate landscape of CTC formation,metastatic mechanisms,and the myriad factors influencing their behavior.Integral signaling pathways,such as integrin-related signaling,cellular autophagy,epithelial-mesenchymal transition,and interactions with platelets,are examined in detail.Furthermore,we explore the realm of precision nanomedicine design,with a specific emphasis on the anoikis‒platelet interface.This innovative approach strategically targets CTC survival mechanisms,offering promising avenues for combatting metastatic cancer with unprecedented precision and efficacy.The review underscores the indispensable role of the rational design of platelet-based nanomedicine in the pursuit of restraining CTC-driven metastasis.
基金Supported by Bando Laboratori,DD MIUR 14.5.2005 n.602/Ric/2005 of the Italian Ministry of Instruction and Research,No.DM18604by FESR P.O.Apulia Region 2007-2013,Action 1.2.4,No.3Q5AX31by the Progetto Bandiera NANOMAX ENCODER
文摘Since the recognition of disease molecular basis,it has become clear that the keystone moments of medical practice,namely early diagnosis,appropriate therapeutic treatment and patient follow-up,must be approached at a molecular level.These objectives will be in the near future more effectively achievable thanks to the impressive developments in nanotechnologies and their applications to the biomedical field,starting-up the nanomedicine era.The continuous advances in the development of biocompatible smart nanomaterials,in particular,will be crucial in several aspects of medicine.In fact,the possibility of manufacturing nanoparticle contrast agents that can be selectively targeted to specific pathological cells has extended molecular im-aging applications to non-ionizing techniques and,at the same time,has made reachable the perspective of combining highly accurate diagnoses and personalized therapies in a single theranostic intervention.Main developing applications of nanosized theranostic agents include targeted molecular imaging,controlled drug release,therapeutic monitoring,guidance of radiationbased treatments and surgical interventions.Here we will review the most recent findings in nanoparticles contrast agents and their applications in the field of cancer molecular imaging employing non-ionizing techniques and disease-specific contrast agents,with special focus on recent findings on those nanomaterials particularly promising for ultrasound molecular imaging and simultaneous treatment of cancer.
文摘In this investigation, the anticancer potentiality and biological mechanism of gold nanoparticles (AuNPs) was studied in SUDHL-4 cell line. Metallic AuNPs were prepared and stabilized with ethanol clove (Syzygium aromaticum) extract. The green synthesis of AuNPs was characterized and evaluated by UV-Visible Spectroscopic, X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Transmission electron microscopy (TEM), Dynamic Light Scattering (DLS) and biological activities using various biochemical assays. Green synthesis of AuNPs was confirmed by instrument method. The TEM images show polydis-perse, mostly spherical AuNPs particles of 12 - 20 nm. AuNPs were decreased the growth and viability of SU-DHL-4 cell line and increased the apoptosis. The treatments of SU-DHL-4 cells with AuNPs resulted in a moderate considerably increase in Reactive oxygen species (ROS) production. We measured apoptosis by Annexin-V/propidium iodide (PI) in the existence and nonexistence of the antioxidant N-acetyl-L-cysteine (NAC), the glutathione-depleting agent buthionine sulfoximine (BSO), or caspase inhibitors to determine the mechanism of cell death. AuNPs are unique potential anticancer agents that cause ROS-dependent apoptosis in SUDHL-4 cell line which was improved by depletion of glutathione (GHS) and inhibited by N-acetyl-L-cysteine on Z-VAD-FMK.
文摘Cancer is a leading cause of death worldwide.Nowadays,the therapies are inadequate and spur demand for improved technologies.Rapid growth in nanotechnology and novel nanomedicine products represents an opportunity to achieve sophisticated targeting strategies and multi-functionality.Nanomedicine is increasingly used to develop new cancer diagnosis and treatment methods since this technology can modulate the biodistribution and the target site accumulation of chemotherapeutic drugs,thereby reducing their toxicity.Cancer nanotechnology and cancer immunotherapy are two parallel themes that have emerged over the last few decades while searching for a cure for cancer.Immunotherapy is revolutionizing cancer treatment,as it can achieve unprecedented responses in advanced-stage patients,including complete cures and long-term survival.A deeper understanding of the human immune system allows the establishment of combination regimens in which immunotherapy is combined with other treatment modalities(as in the case of the nanodrug Ferumoxytol).Furthermore,the combination of gene therapy approaches with nanotechnology that aims to silence or express cancer-relevant genes via one-time treatment is gradually progressing from bench to bedside.The most common example includes lipidbased nanoparticles that target VEGF-Αand KRAS pathways.This review focuses on nanoparticle-based platforms utilized in recent advances aiming to increase the efficacy of currently available cancer therapies.The insights provided and the evidence obtained in this paper indicate a bright future ahead for immunooncology applications of engineering nanomedicines.
基金This study is supported by the National Natural Science Foundation of China(No.82203059)the China Postdoctoral Science Foundation(2021M701335).
文摘Background:Immunosuppressive M2 macrophages in the tumor microenvironment(TME)can mediate the therapeutic resistance of tumors,and seriously affect the clinical efficacy and prognosis of tumor patients.This study aims to develop a novel drug delivery system for dual-targeting tumor and macrophages to inhibit tumor and induce macrophage polarization.Methods:The anti-tumor effects of methyltransferase like 14(METTL14)were investigated both in vitro and in vivo.The underlying mechanisms of METTL14 regulating macrophages were also explored in this study.We further constructed the cyclic(Arg-Gly-Asp)(cRGD)peptide modified macrophage membrane-coated nanovesicles to co-deliver METTL14 and the TLR4 agonist.Results:We found that METTL14 significantly inhibits the growth of tumor in vitro.METTL14 might downregulate TICAM2 and inhibit the Toll-like receptor 4(TLR4)pathway of macrophages,meanwhile,the combination of METTL14 and the TLR4 agonist could induce M1 polarization of macrophages.Macrophage membrane-coated nanovesicles are characterized by easy modification,drug loading,and dual-targeting tumor and macrophages,and cRGD modification can further enhance its targeting ability.It showed that the nanovesicles could improve the in vivo stability of METTL14,and dual-target tumor and macrophages to inhibit tumor and induce M1 polarization of macrophages.Conclusions:This study anticipates achieving the dual purposes of tumor inhibition and macrophage polarization,and providing a new therapeutic strategy for tumors.
基金the National Natural Science Foundation of China(Nos.32000998 and U2004123)the Young Elite Scientists Sponsorship Program by Henan Association for Science and Technology(No.2022HYTP046)the China Postdoctoral Science Foundation(Nos.2019TQ0285,2019M662513,2021TQ0298,and 2022TQ0296).
文摘Traditional surgical treatment is difficult to thoroughly remove esophageal squamous cell carcinomas(ESCC),postoperative recurrence caused by residual tumor cells is a critical factor in the poor prognosis.Since surgical resection promotes the local angiogenesis at the tumor site,further exacerbating the proliferation and invasion of residual tumor cells,it is urgent to inhibit angiogenesis after surgery.Here,a functional peptide-based nanomedicine was obtained from peptide–drug conjugates,which are composed of a hydrophilic targeting motif(vascular endothelial growth factor family and their receptors(VEGFR)targeting peptide for anti-angiogenesis),an ester-linked hydrophobic oridonin(ORI).The nanomedicine exhibits esterase-catalyzed disassembly and drug release,significantly enhanced the anti-tumor efficacy of chemotherapeutics in a postoperative tumor recurrence model through synergistic anti-angiogenic strategies.This study provides an integrated solution for anti-angiogenesisaugmented chemotherapy and demonstrates the encouraging potential for postoperative treatment.