To develop a new high-throughput screening model for human high-density lipoprotein (HDL) receptor (CD36 and LIMPⅡ analogous-1, CLA-1) agonists using CLA-1-expressing insect cells. Methods With the total RNA of h...To develop a new high-throughput screening model for human high-density lipoprotein (HDL) receptor (CD36 and LIMPⅡ analogous-1, CLA-1) agonists using CLA-1-expressing insect cells. Methods With the total RNA of human hepatoma cells BEL-7402 as template, the complementary DNA (cDNA) of CLA-1 was amplified by reverse transcription-polymerase chain reaction (RT-PCR). Bac-to-Bac baculovirus expression system was used to express CLA-1 in insect cells. CLA-1 cDNA was cloned downstream of polyhedrin promoter of Autographa californica nuclear polyhedrosis virus (AcNPV) into donor vector pFastBacl and recombinant pFastBacl-CLA-1 was transformed into E. coli DH10Bac to transpose CLA-1 cDNA to bacrnid DNA. Recombinant bacrnid-CLA-1 was transfected into Spodopterafrugiperda Sf9 insect cells to produce recombinant baculovirus particles. Recombinant CLA- 1 was expressed on the membrane of Sf9 cells infected with the recombinant baculoviruses. A series of parameters of DiI-lipoprotein binding assays of CLA-1-expressing Sf9 cells in 96-well plates were optimized. Results Western blot analysis and DiI-lipoprotein binding assays confirmed that CLA-1 expressed in insect cells had similar immunoreactivity and ligand binding activity as its native counterpart. A reliable and sensitive in vitro cell-based assay was established to assess the activity of CLA-1 and used to screen agonists from different sample libraries. Conclusion Human HDL receptor CLA-1 was successfully expressed in Sf9 insect cells and a novel high-throughput screening model for CLA-1 agonists was developed. Utilization of this model allows us to identify potent and selective CLA-1 agonists which might possibly be used as therapeutics for atherosclerosis.展开更多
Biomimetic nanoengineering presents great potential in biomedical research by integrating cell membrane(CM) with functional nanoparticles. However, preparation of CM biomimetic nanomaterials for custom applications th...Biomimetic nanoengineering presents great potential in biomedical research by integrating cell membrane(CM) with functional nanoparticles. However, preparation of CM biomimetic nanomaterials for custom applications that can avoid the aggregation of nanocarriers while maintaining the biological activity of CM remains a challenge. Herein, a high-performance CM biomimetic graphene nanodecoy was fabricated via purposeful surface engineering, where polyethylene glycol(PEG) was used to modifying magnetic graphene oxide(MGO) to improve its stability in physiological solution, so as to improve the screening efficiency to active components of traditional Chinese medicine(TCM). With this strategy, the constructed PEGylated MGO(PMGO) could keep stable at least 10 days, thus improving the CM coating efficiency. Meanwhile, by taking advantage of the inherent ability of He La cell membrane(HM) to interact with specific ligands, HM-camouflaged PMGO showed satisfied adsorption capacity(116.2 mg/g) and selectivity. Finally, three potential active components, byakangelicol, imperatorin,and isoimperatorin, were screened from Angelica dahurica, whose potential antiproliferative activity were further validated by pharmacological studies. These results demonstrated that the purposeful surfaceengineering is a promising strategy for the design of efficient CM biomimetic nanomaterials, which will promote the development of active components screening in TCM.展开更多
After gene mutation, the pcDNA3.1/APP595/596 plasmid was transfected into HEK293 cells to establish a cell model of Alzheimer's disease. The cell model was treated with donepezil or compound Danshen tablets after cul...After gene mutation, the pcDNA3.1/APP595/596 plasmid was transfected into HEK293 cells to establish a cell model of Alzheimer's disease. The cell model was treated with donepezil or compound Danshen tablets after culture for 72 hours. Reverse transcription-PCR showed that the mRNA expression of amyloid protein precursor decreased in all groups following culture for 24 hours, and that there was no significant difference in the amount of decrease between donepezil and compound Danshen tablets. Our results suggest that compound Danshen tablets can reduce expression of the mRNA for amyloid protein precursor in a transgenic cell model of Alzheimer's disease, with similar effects to donepezil.展开更多
The most common subtype of lung cancer is non-small cell lung cancer(NSCLC), which has a poor prognosis and seriously threatens the health of human beings. The multidisciplinary comprehensive treatment model has gradu...The most common subtype of lung cancer is non-small cell lung cancer(NSCLC), which has a poor prognosis and seriously threatens the health of human beings. The multidisciplinary comprehensive treatment model has gradually become the mainstream of NSCLC treatment. Traditional Chinese medicine(TCM) can be used effectively either as an adjunctive therapy or alone throughout the NSCLC therapy,which has a significant impact on survival, quality of life, and reduction of toxicity. Therefore, this paper reviewed the theoretical basis, the latest clinical application, and combined treatment mechanisms in order to explore the advantage stage of TCM treatment and the synergistic therapeutic mechanisms.展开更多
Objective: The intestinal absorption characteristics of active ingredients are very important for oral administration of traditional Chinese medicine(TCM) to achieve the desired therapeutic effect.However, a deeper un...Objective: The intestinal absorption characteristics of active ingredients are very important for oral administration of traditional Chinese medicine(TCM) to achieve the desired therapeutic effect.However, a deeper understanding about active ingredients absorption characteristics is still lack. The aim of this study was to investigate the absorption properties and mechanism of rhubarb active ingredients in TCM preparation and pure form.Methods: The intestinal absorption behavior of active ingredients in Shenkang extract(SKE) and rhubarb anthraquinone ingredients(RAI) were investigated by in situ single-pass intestinal perfusion model. And the bidirectional transport characteristics of these active ingredients were assessed by in vitro Caco-2 cell monolayer model.Results: In situ experiment on Sprague-Dawley rats, the effective permeability coefficient values of aloeemodin, emodin and chrysophanol in RAI were higher than those in SKE, and the value of rhein in RAI was lower than that in SKE. But the easily absorbed segments of intestine were consistent for all ingredients,whether in SKE or in RAI. In vitro experiment, the apparent permeability coefficient values of rhein, emodin and chrysophanol in RAI were higher than those in SKE, and this value of aloe-emodin in RAI was lower than that in SKE. But their efflux ratio(ER) values in SKE and RAI were all similar.Conclusion: Four rhubarb anthraquinone ingredients in SKE and RAI have similar absorption mechanism and different absorption behavior, and the microenvironment of the study models influenced their absorption behavior. The results may provide an aid for understanding of the absorption characteristics of the TCM active ingredients in complex environments and the complementarities of different research models.展开更多
AIM: To investigate the inhibitory effect of Chinese herbal medicine on the transcription of hepatitis C virus (HCV) structural gene in Hela D cells.METHODS: Hela cell line was transfected with recombinant pBK-CMV-HCV...AIM: To investigate the inhibitory effect of Chinese herbal medicine on the transcription of hepatitis C virus (HCV) structural gene in Hela D cells.METHODS: Hela cell line was transfected with recombinant pBK-CMV-HCV containing HCV structural gene by Lipofectamine. RT-nested-PCR and Western blot assay were used to testify the HCV gene expression in Hela cells. The Hela cells expressing HCV structural protein were named Hela D cells. Prescriptions of Xiao chaihu Decoction (XCHD),Fufang Huangqi (FFHQ) and Bingganling (BGL) wererespectively added to Hela D cells in various concentrations. Semi-quantitative RT-nested-PCR product analysis was performed according to the fluorescent density between HCV DNA band and GAPDH DNA band in gel electrophoresisafter screened. RESULTS: Recombinant pBK-CMV-HCV could correctly express the HCV structural gene in Hela D cells. After coculture of Hela D cells with three prescriptional different concentrations for 48 h respectively, the transcription of HCVgene decreased with increasing of the concentration of each prescription. The lightness ratio of HCV product bands to GAPDH product bands was 0.24, 0.10 and 0.12 in Hela D cells incubated with 0.1 g/mL of XCHD, FFHQand BGL respectively and the lightness ratio HCV product bands to GAPDH product bands was 0.75, 0.67 and 0.61respectively in the control cells. CONCLUSION: The prescriptions of XCHD, FFHQ and BGL partly inhibit the transcription of HCV structural gene inHela D cells.展开更多
Mesenchymal stem cells(MSCs)represent the most clinically used stem cells in regenerative medicine.However,due to the disadvantages with primary MSCs,such as limited cell proliferative capacity and rarity in the tissu...Mesenchymal stem cells(MSCs)represent the most clinically used stem cells in regenerative medicine.However,due to the disadvantages with primary MSCs,such as limited cell proliferative capacity and rarity in the tissues leading to limited MSCs,gradual loss of differentiation during in vitro expansion reducing the efficacy of MSC application,and variation among donors increasing the uncertainty of MSC efficacy,the clinical application of MSCs has been greatly hampered.MSCs derived from human pluripotent stem cells(hPSC-MSCs)can circumvent these problems associated with primary MSCs.Due to the infinite selfrenewal of hPSCs and their differentiation potential towards MSCs,hPSC-MSCs are emerging as an attractive alternative for regenerative medicine.This review summarizes the progress on derivation of MSCs from human pluripotent stem cells,disease modelling and drug screening using hPSC-MSCs,and various applications of hPSC-MSCs in regenerative medicine.In the end,the challenges and concerns with hPSC-MSC applications are also discussed.展开更多
At the level of in vitro drug screening,the development of a phenotypic analysis system with highcontent screening at the core provides a strong platform to support high-throughput drug screening.There are few systema...At the level of in vitro drug screening,the development of a phenotypic analysis system with highcontent screening at the core provides a strong platform to support high-throughput drug screening.There are few systematic reports on brain organoids,as a new three-dimensional in vitro model,in terms of model stability,key phenotypic fingerprint,and drug screening schemes,and particula rly rega rding the development of screening strategies for massive numbers of traditional Chinese medicine monomers.This paper reviews the development of brain organoids and the advantages of brain organoids over induced neurons or cells in simulated diseases.The paper also highlights the prospects from model stability,induction criteria of brain organoids,and the screening schemes of brain organoids based on the characteristics of brain organoids and the application and development of a high-content screening system.展开更多
Alzheimer’s disease(AD)is a progressive neurodegenerative disease in which patients exhibit gradual loss of memory that impairs their ability to learn or carry out daily tasks.Diagnosis of AD is difficult,particularl...Alzheimer’s disease(AD)is a progressive neurodegenerative disease in which patients exhibit gradual loss of memory that impairs their ability to learn or carry out daily tasks.Diagnosis of AD is difficult,particularly in early stages of the disease,and largely consists of cognitive assessments,with only one in four patients being correctly diagnosed.Development of novel therapeutics for the treatment of AD has proved to be a lengthy,costly and relatively unproductive process with attrition rates of】90%.As a result,there are no cures for AD and few treatment options available for patients.Therefore,there is a pressing need for drug discovery platforms that can accurately and reproducibly mimic the AD phenotype and be amenable to high content screening applications.Here,we discuss the use of induced pluripotent stem cells(iPSCs),which can be derived from adult cells,as a method of recapitulation of AD phenotype in vitro.We assess their potential use in high content screening assays and the barriers that exist to realising their full potential in predictive efficacy,toxicology and disease modelling.At present,a number of limitations need to be addressed before the use of iPSC technology can be fully realised in AD therapeutic applications.However,whilst the use of AD-derived iPSCs in drug discovery remains a fledgling field,it is one with immense potential that is likely to reach fruition within the next few years.展开更多
Objective: To find new photosensitizers from Chinese medicinal herbs for cancer photodynamic therapy. Methods: The extracts of thirteen herbs were examined: (1) Their fluorescence excitation wave lengths and emission ...Objective: To find new photosensitizers from Chinese medicinal herbs for cancer photodynamic therapy. Methods: The extracts of thirteen herbs were examined: (1) Their fluorescence excitation wave lengths and emission wave lengths; (2) Their fluorescence intensity in living cells and (3) Their distribution and localization in the living cells and the fixed cells both stained in each extract, and responses of cell fluorescence intensity to pH value change. Furthermore, the herb's anticancer photosensitive efficiencies were studied by using BGC823 human stomach cancer cells. Results: Cortex Phellodendri and Rhizoma Coptidis, were found with optimal fluorescence properties as photosensitizers in this test. The latter could remarkably reduce the cell metabolic viability, proliferative ability and increase the cell mortality when the cells exposed to both drugs and luminance but not to drug only. Conclusions: The potential of Chinese medicine as a new kind of photosensitizer and its possibility for using in anticancer photodynamic therapy are existed.展开更多
The goal of this study was to increase the dopamine content and reduce dopaminergic metabolites in the brain of Parkinson’s disease rats. Using high-performance liquid chromatography, we found that dopamine and dopam...The goal of this study was to increase the dopamine content and reduce dopaminergic metabolites in the brain of Parkinson’s disease rats. Using high-performance liquid chromatography, we found that dopamine and dopaminergic metabolite(dihydroxyphenylacetic acid and homovanillic acid) content in the midbrain of Parkinson’s disease rats was increased after neural stem cell transplantation + Zhichan decoction, compared with neural stem cell transplantation alone. Our genetic algorithm results show that dihydroxyphenylacetic acid and homovanillic acid levels achieve global optimization. Neural stem cell transplantation + Zhichan decoction increased dihydroxyphenylacetic acid levels up to 10-fold, while transplantation alone resulted in a 3-fold increment. Homovanillic acid levels showed no apparent change. Our experimental findings show that after neural stem cell transplantation in Parkinson’s disease rats, Zhichan decoction can promote differentiation of neural stem cells into dopaminergic neurons.展开更多
Rheumatoid arthritis(RA)is a common autoimmune disease characterized by progressive joint inflammation and destruction,deformity,loss of mobility,and permanent disability.Although the cellular and molecular mechanisms...Rheumatoid arthritis(RA)is a common autoimmune disease characterized by progressive joint inflammation and destruction,deformity,loss of mobility,and permanent disability.Although the cellular and molecular mechanisms involved in RA are understood in detail,no drugs or therapies can completely cure RA.Many long-term efforts have been directed towards a better understanding of RA pathogenesis and the development of new classes of therapeutics.Thus,the ongoing elucidation of pathogenic events underlying RA mostly relies on studies of animal models.Herein,we comprehensively review and discuss the characteristics,challenges,and unresolved of issues of various experimental models of RA to provide a basis and reference for the rational selection of experimental RA models for basic investigations into traditional Chinese medicine(TCM).展开更多
The purpose of this study was to establish a drug screening method for small molecules extracted from traditional Chinese medicines(TCM) that have neuronal differentiation promoting effects, using P19 embryonic carcin...The purpose of this study was to establish a drug screening method for small molecules extracted from traditional Chinese medicines(TCM) that have neuronal differentiation promoting effects, using P19 embryonic carcinoma cell as a cell-based model. First, the constructed plasmid(p Tα1-Luc) was transfected into P19 cells to establish a screening model. Second, several TCMs were screened using the established model and all-trans-retinoic acid as a positive control. Finally, the underlying molecular mechanism was explored using immunofluorescence staining, q T-PCR, and Western blot analysis. Our results indicated that the drug screen model was established successfully and that both honokiol and hyperoside induced P19 differentiation into neurons, with the possible molecular mechanism being modulating the Wnt signaling pathway. In conclusion, the drug screening model developed in the present study provides a rapid, cell-based screening platform for identifying natural compounds with neuronal differentiation effects.展开更多
文摘To develop a new high-throughput screening model for human high-density lipoprotein (HDL) receptor (CD36 and LIMPⅡ analogous-1, CLA-1) agonists using CLA-1-expressing insect cells. Methods With the total RNA of human hepatoma cells BEL-7402 as template, the complementary DNA (cDNA) of CLA-1 was amplified by reverse transcription-polymerase chain reaction (RT-PCR). Bac-to-Bac baculovirus expression system was used to express CLA-1 in insect cells. CLA-1 cDNA was cloned downstream of polyhedrin promoter of Autographa californica nuclear polyhedrosis virus (AcNPV) into donor vector pFastBacl and recombinant pFastBacl-CLA-1 was transformed into E. coli DH10Bac to transpose CLA-1 cDNA to bacrnid DNA. Recombinant bacrnid-CLA-1 was transfected into Spodopterafrugiperda Sf9 insect cells to produce recombinant baculovirus particles. Recombinant CLA- 1 was expressed on the membrane of Sf9 cells infected with the recombinant baculoviruses. A series of parameters of DiI-lipoprotein binding assays of CLA-1-expressing Sf9 cells in 96-well plates were optimized. Results Western blot analysis and DiI-lipoprotein binding assays confirmed that CLA-1 expressed in insect cells had similar immunoreactivity and ligand binding activity as its native counterpart. A reliable and sensitive in vitro cell-based assay was established to assess the activity of CLA-1 and used to screen agonists from different sample libraries. Conclusion Human HDL receptor CLA-1 was successfully expressed in Sf9 insect cells and a novel high-throughput screening model for CLA-1 agonists was developed. Utilization of this model allows us to identify potent and selective CLA-1 agonists which might possibly be used as therapeutics for atherosclerosis.
基金National Natural Science Foundation of China(Nos.82073807 and 81973277)the WorldClass Universities(Disciplines)and the Characteristic Development Guidance Funds for the Central Universities(No.PY3A012,China)for financial support。
文摘Biomimetic nanoengineering presents great potential in biomedical research by integrating cell membrane(CM) with functional nanoparticles. However, preparation of CM biomimetic nanomaterials for custom applications that can avoid the aggregation of nanocarriers while maintaining the biological activity of CM remains a challenge. Herein, a high-performance CM biomimetic graphene nanodecoy was fabricated via purposeful surface engineering, where polyethylene glycol(PEG) was used to modifying magnetic graphene oxide(MGO) to improve its stability in physiological solution, so as to improve the screening efficiency to active components of traditional Chinese medicine(TCM). With this strategy, the constructed PEGylated MGO(PMGO) could keep stable at least 10 days, thus improving the CM coating efficiency. Meanwhile, by taking advantage of the inherent ability of He La cell membrane(HM) to interact with specific ligands, HM-camouflaged PMGO showed satisfied adsorption capacity(116.2 mg/g) and selectivity. Finally, three potential active components, byakangelicol, imperatorin,and isoimperatorin, were screened from Angelica dahurica, whose potential antiproliferative activity were further validated by pharmacological studies. These results demonstrated that the purposeful surfaceengineering is a promising strategy for the design of efficient CM biomimetic nanomaterials, which will promote the development of active components screening in TCM.
基金supported by the Bureau of Traditional Chinese Medicine of Guangdong Province, No. 2010463the National Science and Technology"12~(th) Five-years"Major Special-purpose Foundation,No.2011ZX09201-201-01
文摘After gene mutation, the pcDNA3.1/APP595/596 plasmid was transfected into HEK293 cells to establish a cell model of Alzheimer's disease. The cell model was treated with donepezil or compound Danshen tablets after culture for 72 hours. Reverse transcription-PCR showed that the mRNA expression of amyloid protein precursor decreased in all groups following culture for 24 hours, and that there was no significant difference in the amount of decrease between donepezil and compound Danshen tablets. Our results suggest that compound Danshen tablets can reduce expression of the mRNA for amyloid protein precursor in a transgenic cell model of Alzheimer's disease, with similar effects to donepezil.
基金supported by National Administration of Traditional Chinese Medicine: The Seventh Batch of National Traditional Chinese Medicine Experts Academic Experience Inheritance ProjectTianjin Municipal Education Commission Scientific Research Plan Project (No. 2021KJ143)。
文摘The most common subtype of lung cancer is non-small cell lung cancer(NSCLC), which has a poor prognosis and seriously threatens the health of human beings. The multidisciplinary comprehensive treatment model has gradually become the mainstream of NSCLC treatment. Traditional Chinese medicine(TCM) can be used effectively either as an adjunctive therapy or alone throughout the NSCLC therapy,which has a significant impact on survival, quality of life, and reduction of toxicity. Therefore, this paper reviewed the theoretical basis, the latest clinical application, and combined treatment mechanisms in order to explore the advantage stage of TCM treatment and the synergistic therapeutic mechanisms.
基金supported by the National Natural Science Foundation of China (No. 81673397)the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2020JM-023)。
文摘Objective: The intestinal absorption characteristics of active ingredients are very important for oral administration of traditional Chinese medicine(TCM) to achieve the desired therapeutic effect.However, a deeper understanding about active ingredients absorption characteristics is still lack. The aim of this study was to investigate the absorption properties and mechanism of rhubarb active ingredients in TCM preparation and pure form.Methods: The intestinal absorption behavior of active ingredients in Shenkang extract(SKE) and rhubarb anthraquinone ingredients(RAI) were investigated by in situ single-pass intestinal perfusion model. And the bidirectional transport characteristics of these active ingredients were assessed by in vitro Caco-2 cell monolayer model.Results: In situ experiment on Sprague-Dawley rats, the effective permeability coefficient values of aloeemodin, emodin and chrysophanol in RAI were higher than those in SKE, and the value of rhein in RAI was lower than that in SKE. But the easily absorbed segments of intestine were consistent for all ingredients,whether in SKE or in RAI. In vitro experiment, the apparent permeability coefficient values of rhein, emodin and chrysophanol in RAI were higher than those in SKE, and this value of aloe-emodin in RAI was lower than that in SKE. But their efflux ratio(ER) values in SKE and RAI were all similar.Conclusion: Four rhubarb anthraquinone ingredients in SKE and RAI have similar absorption mechanism and different absorption behavior, and the microenvironment of the study models influenced their absorption behavior. The results may provide an aid for understanding of the absorption characteristics of the TCM active ingredients in complex environments and the complementarities of different research models.
基金Supported by the Chinese medicine and pharmacology bureau of Jiangsu Province in China
文摘AIM: To investigate the inhibitory effect of Chinese herbal medicine on the transcription of hepatitis C virus (HCV) structural gene in Hela D cells.METHODS: Hela cell line was transfected with recombinant pBK-CMV-HCV containing HCV structural gene by Lipofectamine. RT-nested-PCR and Western blot assay were used to testify the HCV gene expression in Hela cells. The Hela cells expressing HCV structural protein were named Hela D cells. Prescriptions of Xiao chaihu Decoction (XCHD),Fufang Huangqi (FFHQ) and Bingganling (BGL) wererespectively added to Hela D cells in various concentrations. Semi-quantitative RT-nested-PCR product analysis was performed according to the fluorescent density between HCV DNA band and GAPDH DNA band in gel electrophoresisafter screened. RESULTS: Recombinant pBK-CMV-HCV could correctly express the HCV structural gene in Hela D cells. After coculture of Hela D cells with three prescriptional different concentrations for 48 h respectively, the transcription of HCVgene decreased with increasing of the concentration of each prescription. The lightness ratio of HCV product bands to GAPDH product bands was 0.24, 0.10 and 0.12 in Hela D cells incubated with 0.1 g/mL of XCHD, FFHQand BGL respectively and the lightness ratio HCV product bands to GAPDH product bands was 0.75, 0.67 and 0.61respectively in the control cells. CONCLUSION: The prescriptions of XCHD, FFHQ and BGL partly inhibit the transcription of HCV structural gene inHela D cells.
文摘Mesenchymal stem cells(MSCs)represent the most clinically used stem cells in regenerative medicine.However,due to the disadvantages with primary MSCs,such as limited cell proliferative capacity and rarity in the tissues leading to limited MSCs,gradual loss of differentiation during in vitro expansion reducing the efficacy of MSC application,and variation among donors increasing the uncertainty of MSC efficacy,the clinical application of MSCs has been greatly hampered.MSCs derived from human pluripotent stem cells(hPSC-MSCs)can circumvent these problems associated with primary MSCs.Due to the infinite selfrenewal of hPSCs and their differentiation potential towards MSCs,hPSC-MSCs are emerging as an attractive alternative for regenerative medicine.This review summarizes the progress on derivation of MSCs from human pluripotent stem cells,disease modelling and drug screening using hPSC-MSCs,and various applications of hPSC-MSCs in regenerative medicine.In the end,the challenges and concerns with hPSC-MSC applications are also discussed.
基金supported by the National Natural Science Foundation of China,No.32000498the Startup Funding of Zhejiang University City College,No.210000-581849 (both to CG)National College Students’Innovative Entrepreneurial Training Plan Program,No.2021 13021024 (to JQZ)。
文摘At the level of in vitro drug screening,the development of a phenotypic analysis system with highcontent screening at the core provides a strong platform to support high-throughput drug screening.There are few systematic reports on brain organoids,as a new three-dimensional in vitro model,in terms of model stability,key phenotypic fingerprint,and drug screening schemes,and particula rly rega rding the development of screening strategies for massive numbers of traditional Chinese medicine monomers.This paper reviews the development of brain organoids and the advantages of brain organoids over induced neurons or cells in simulated diseases.The paper also highlights the prospects from model stability,induction criteria of brain organoids,and the screening schemes of brain organoids based on the characteristics of brain organoids and the application and development of a high-content screening system.
基金Supported by United Kingdom Biotechnology and Biosciences Research Council,Engineering and Physical Sciences Research Council and the Technology Strategy Board
文摘Alzheimer’s disease(AD)is a progressive neurodegenerative disease in which patients exhibit gradual loss of memory that impairs their ability to learn or carry out daily tasks.Diagnosis of AD is difficult,particularly in early stages of the disease,and largely consists of cognitive assessments,with only one in four patients being correctly diagnosed.Development of novel therapeutics for the treatment of AD has proved to be a lengthy,costly and relatively unproductive process with attrition rates of】90%.As a result,there are no cures for AD and few treatment options available for patients.Therefore,there is a pressing need for drug discovery platforms that can accurately and reproducibly mimic the AD phenotype and be amenable to high content screening applications.Here,we discuss the use of induced pluripotent stem cells(iPSCs),which can be derived from adult cells,as a method of recapitulation of AD phenotype in vitro.We assess their potential use in high content screening assays and the barriers that exist to realising their full potential in predictive efficacy,toxicology and disease modelling.At present,a number of limitations need to be addressed before the use of iPSC technology can be fully realised in AD therapeutic applications.However,whilst the use of AD-derived iPSCs in drug discovery remains a fledgling field,it is one with immense potential that is likely to reach fruition within the next few years.
文摘Objective: To find new photosensitizers from Chinese medicinal herbs for cancer photodynamic therapy. Methods: The extracts of thirteen herbs were examined: (1) Their fluorescence excitation wave lengths and emission wave lengths; (2) Their fluorescence intensity in living cells and (3) Their distribution and localization in the living cells and the fixed cells both stained in each extract, and responses of cell fluorescence intensity to pH value change. Furthermore, the herb's anticancer photosensitive efficiencies were studied by using BGC823 human stomach cancer cells. Results: Cortex Phellodendri and Rhizoma Coptidis, were found with optimal fluorescence properties as photosensitizers in this test. The latter could remarkably reduce the cell metabolic viability, proliferative ability and increase the cell mortality when the cells exposed to both drugs and luminance but not to drug only. Conclusions: The potential of Chinese medicine as a new kind of photosensitizer and its possibility for using in anticancer photodynamic therapy are existed.
基金financially supported by the National Natural Science Foundation of China,No.30772870
文摘The goal of this study was to increase the dopamine content and reduce dopaminergic metabolites in the brain of Parkinson’s disease rats. Using high-performance liquid chromatography, we found that dopamine and dopaminergic metabolite(dihydroxyphenylacetic acid and homovanillic acid) content in the midbrain of Parkinson’s disease rats was increased after neural stem cell transplantation + Zhichan decoction, compared with neural stem cell transplantation alone. Our genetic algorithm results show that dihydroxyphenylacetic acid and homovanillic acid levels achieve global optimization. Neural stem cell transplantation + Zhichan decoction increased dihydroxyphenylacetic acid levels up to 10-fold, while transplantation alone resulted in a 3-fold increment. Homovanillic acid levels showed no apparent change. Our experimental findings show that after neural stem cell transplantation in Parkinson’s disease rats, Zhichan decoction can promote differentiation of neural stem cells into dopaminergic neurons.
基金funding support from the Science and Technology Innovation Program of Hunan Province(No.XKJ[2021]43-2021RC4035)supported by the Hunan Furong Distinguished Scholar Program(No.XJT[2020]58)the Chinese Academy of Engineering Academician LIU Liang’s Workstation of Hunan(No.XKXT[2020]34)。
文摘Rheumatoid arthritis(RA)is a common autoimmune disease characterized by progressive joint inflammation and destruction,deformity,loss of mobility,and permanent disability.Although the cellular and molecular mechanisms involved in RA are understood in detail,no drugs or therapies can completely cure RA.Many long-term efforts have been directed towards a better understanding of RA pathogenesis and the development of new classes of therapeutics.Thus,the ongoing elucidation of pathogenic events underlying RA mostly relies on studies of animal models.Herein,we comprehensively review and discuss the characteristics,challenges,and unresolved of issues of various experimental models of RA to provide a basis and reference for the rational selection of experimental RA models for basic investigations into traditional Chinese medicine(TCM).
基金supported by the China National Key Hi-Tech Innovation Project for the R&D of Novel Drugs(No.2009ZX09302)National Natural Science Foundation of China(No.81271338)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20130096110011)
文摘The purpose of this study was to establish a drug screening method for small molecules extracted from traditional Chinese medicines(TCM) that have neuronal differentiation promoting effects, using P19 embryonic carcinoma cell as a cell-based model. First, the constructed plasmid(p Tα1-Luc) was transfected into P19 cells to establish a screening model. Second, several TCMs were screened using the established model and all-trans-retinoic acid as a positive control. Finally, the underlying molecular mechanism was explored using immunofluorescence staining, q T-PCR, and Western blot analysis. Our results indicated that the drug screen model was established successfully and that both honokiol and hyperoside induced P19 differentiation into neurons, with the possible molecular mechanism being modulating the Wnt signaling pathway. In conclusion, the drug screening model developed in the present study provides a rapid, cell-based screening platform for identifying natural compounds with neuronal differentiation effects.