Tumor immune microenvironment is closely related to tumor initiation,prognosis,and response to immunotherapy.The immune landscapes,number of infiltrating immune cells,and the localization of lymphocytes in the tumor v...Tumor immune microenvironment is closely related to tumor initiation,prognosis,and response to immunotherapy.The immune landscapes,number of infiltrating immune cells,and the localization of lymphocytes in the tumor vary in across different types of tumors.The immune contexture in cancer,which is determined by the density,composition,functional state and organization of the leukocyte infiltrate of the tumor,can yield information relevant to the prediction of treatment response and patients’prognosis.Better understanding of the immune atlas in human tumors have been achieved with the development and application of single-cell analysis technology,which has provided a reference for prognosis,and insights on new targets for immunotherapy.In this review,we summarized the different characteristics of immune contexture in cancer defined by a variety of single-cell techniques,which have enhanced our understanding on the pathophysiology of the tumor microenvironment.We believe that there are much more to be uncovered in this rapidly developing field of medicine,and they will predict the prognosis of cancer patients and guide the rational design of immunotherapies for success in cancer eradication.展开更多
The differential expression of genes in HepG2 cells caused by UC001 kfo RNAi was investigated using RNA-seq. HepG2 cells were infected by Lenti-sh UC001 kfo lentivirus particles. The expression of UC001 kfo m RNA in t...The differential expression of genes in HepG2 cells caused by UC001 kfo RNAi was investigated using RNA-seq. HepG2 cells were infected by Lenti-sh UC001 kfo lentivirus particles. The expression of UC001 kfo m RNA in the HepG2-sh UC001 kfo cell line was detected by real-time PCR. RNA-seq technology was used to identify the difference in the expression of genes regulated by lnc RNA UC001 kfo in the HepG2 cell line. Gene ontology and signaling pathway analysis were performed to reveal the biological functions of the genes encoding of significantly different m RNAs. The results showed that m RNAs were differentially expressed between the HepG2-sh UC001 kfo cell line and the HepG2 cell line. The UC001 kfo m RNA was significantly down-regulated in the stable cell line HepG2-sh UC001kfo(P〈0.001). Additionally, we found 19 signaling pathways or functional classifications encompassing 30 genes that played a role in cancer characteristics, cell adhesion, invasion and migration. The results also showed that the expression of many genes associated with cancer cell invasion and metastasis was decreased with the down-regulation of the lnc RNA UC001 kfo. Lnc RNA UC001 kfo may play a role in regulating cancer cell invasion and metastasis. It was suggested that m RNAs were differentially expressed in the HepG2 cell line after the down-regulation of lnc RNA-UC001 kfo. Some took part in the extracellular matrix, cell adhesion, motility, growth, and localization. The genes encoding of differentially expressed m RNAs may participate in cell invasion and metastasis.展开更多
Neurotrophin-3 (NT-3) can promote the repair of central nervous system and retinal damage. In previous reports, NT-3 has been expressed by viral vectors. However, plasmid vectors have a safer profile compared with v...Neurotrophin-3 (NT-3) can promote the repair of central nervous system and retinal damage. In previous reports, NT-3 has been expressed by viral vectors. However, plasmid vectors have a safer profile compared with viral vectors in clinical studies. This study recombined amplified human retinal NT-3 with a eukaryotic expression plasmid containing green fluorescent protein (GFP) to construct an NT-3 expression plasmid, pEGFP-N1-NT-3. The transfection efficiency 48 hours after pEGFP-N1-NT-3 transfection to 293T cells was 50.06 + 2.78%. Abundant NTo3-GFP was expressed in 293T cells as observed by fluorescence microscopy, suggesting the construct pEGFP-N1-NT-3 effectively expressed and secreted NT-3-GFP. Secretory vesicles containing NT-3-GFP were observed in a constant location in cells by laser scan confocal microscopy, indicating the expression and secretion processes of NT-3 in eukaryotic cells were in accordance with the physical synthesis processes of secreted proteins. Western blot assay showed that pro-NTo3-GFP had a molecular weight of 56 kDa, further confirming NT-3-GFP expression. At 48 hours after transfection, the concentration of NT-3 in culture medium was 22.3 ng/mL, suggesting NT-3 produced by pEGFP-N1-NT-3 was efficiently secreted. This study constructed a human retinal-derived NT-3 eukaryotic expression plasmid that efficiently expressed and secreted NT-3.展开更多
In this review, we highlight the latest development of multi-channel microfluidic chip-mass spectrometry(chip-MS) in cell analysis and metabolite detection. Following a brief introduction about history and developme...In this review, we highlight the latest development of multi-channel microfluidic chip-mass spectrometry(chip-MS) in cell analysis and metabolite detection. Following a brief introduction about history and development of multi-channel microchip and MS combination, we will elaborate the key issues of constructing chip-MS platform interface. Then exciting progresses made in this field should be reviewed with well exemplified works, including chip-MS technology for cell introduction, pretreatment of cell secretions and cell metabolite analysis. We will also describe the development of integrated total analysis systems proposed by our group. We hope this brief review will inspire interested readers and provide knowledge about chip-MS platform in the bioanalysis field, particularly in cell analysis and metabolite identifying applications.展开更多
基金This work was supported by the State Key Project for Liver Cancer(2018ZX10732202-001)the National Research Program of China(2017YFA0505803,2017YFC0908100)+1 种基金National Natural Science Foundation of China(81790633,91729303,81672860,81702298 and 81422032)National Natural Science Foundation of Shanghai(17ZR143800)
文摘Tumor immune microenvironment is closely related to tumor initiation,prognosis,and response to immunotherapy.The immune landscapes,number of infiltrating immune cells,and the localization of lymphocytes in the tumor vary in across different types of tumors.The immune contexture in cancer,which is determined by the density,composition,functional state and organization of the leukocyte infiltrate of the tumor,can yield information relevant to the prediction of treatment response and patients’prognosis.Better understanding of the immune atlas in human tumors have been achieved with the development and application of single-cell analysis technology,which has provided a reference for prognosis,and insights on new targets for immunotherapy.In this review,we summarized the different characteristics of immune contexture in cancer defined by a variety of single-cell techniques,which have enhanced our understanding on the pathophysiology of the tumor microenvironment.We believe that there are much more to be uncovered in this rapidly developing field of medicine,and they will predict the prognosis of cancer patients and guide the rational design of immunotherapies for success in cancer eradication.
基金supported by National Natural Science Foudation of China(No.U1404309)
文摘The differential expression of genes in HepG2 cells caused by UC001 kfo RNAi was investigated using RNA-seq. HepG2 cells were infected by Lenti-sh UC001 kfo lentivirus particles. The expression of UC001 kfo m RNA in the HepG2-sh UC001 kfo cell line was detected by real-time PCR. RNA-seq technology was used to identify the difference in the expression of genes regulated by lnc RNA UC001 kfo in the HepG2 cell line. Gene ontology and signaling pathway analysis were performed to reveal the biological functions of the genes encoding of significantly different m RNAs. The results showed that m RNAs were differentially expressed between the HepG2-sh UC001 kfo cell line and the HepG2 cell line. The UC001 kfo m RNA was significantly down-regulated in the stable cell line HepG2-sh UC001kfo(P〈0.001). Additionally, we found 19 signaling pathways or functional classifications encompassing 30 genes that played a role in cancer characteristics, cell adhesion, invasion and migration. The results also showed that the expression of many genes associated with cancer cell invasion and metastasis was decreased with the down-regulation of the lnc RNA UC001 kfo. Lnc RNA UC001 kfo may play a role in regulating cancer cell invasion and metastasis. It was suggested that m RNAs were differentially expressed in the HepG2 cell line after the down-regulation of lnc RNA-UC001 kfo. Some took part in the extracellular matrix, cell adhesion, motility, growth, and localization. The genes encoding of differentially expressed m RNAs may participate in cell invasion and metastasis.
基金supported by the National Natural Science Foundation of China, No. 30973262
文摘Neurotrophin-3 (NT-3) can promote the repair of central nervous system and retinal damage. In previous reports, NT-3 has been expressed by viral vectors. However, plasmid vectors have a safer profile compared with viral vectors in clinical studies. This study recombined amplified human retinal NT-3 with a eukaryotic expression plasmid containing green fluorescent protein (GFP) to construct an NT-3 expression plasmid, pEGFP-N1-NT-3. The transfection efficiency 48 hours after pEGFP-N1-NT-3 transfection to 293T cells was 50.06 + 2.78%. Abundant NTo3-GFP was expressed in 293T cells as observed by fluorescence microscopy, suggesting the construct pEGFP-N1-NT-3 effectively expressed and secreted NT-3-GFP. Secretory vesicles containing NT-3-GFP were observed in a constant location in cells by laser scan confocal microscopy, indicating the expression and secretion processes of NT-3 in eukaryotic cells were in accordance with the physical synthesis processes of secreted proteins. Western blot assay showed that pro-NTo3-GFP had a molecular weight of 56 kDa, further confirming NT-3-GFP expression. At 48 hours after transfection, the concentration of NT-3 in culture medium was 22.3 ng/mL, suggesting NT-3 produced by pEGFP-N1-NT-3 was efficiently secreted. This study constructed a human retinal-derived NT-3 eukaryotic expression plasmid that efficiently expressed and secreted NT-3.
基金supported by National Natural Science Foundation of China (Nos. 81373373, 21435002, 21621003)
文摘In this review, we highlight the latest development of multi-channel microfluidic chip-mass spectrometry(chip-MS) in cell analysis and metabolite detection. Following a brief introduction about history and development of multi-channel microchip and MS combination, we will elaborate the key issues of constructing chip-MS platform interface. Then exciting progresses made in this field should be reviewed with well exemplified works, including chip-MS technology for cell introduction, pretreatment of cell secretions and cell metabolite analysis. We will also describe the development of integrated total analysis systems proposed by our group. We hope this brief review will inspire interested readers and provide knowledge about chip-MS platform in the bioanalysis field, particularly in cell analysis and metabolite identifying applications.