期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
In situ probing of cell-cell communications with surface- enhanced Raman scattering (SERS) nanoprobes and microfluidic networks for screening of immunotherapeutic drugs 被引量:4
1
作者 Lei Wu Zhuyuan Wang +4 位作者 Yizhi Zhang Jiayuan Fei Hui Chen Shenfei Zong Yiping Cui 《Nano Research》 SCIE EI CAS CSCD 2017年第2期584-594,共11页
Discovering novel drugs for cancer immunotherapy requires a robust in vitro drug screening platform that allows for straightforward probing of cell-ceil communications. Here, we combined surface-enhanced Raman scatter... Discovering novel drugs for cancer immunotherapy requires a robust in vitro drug screening platform that allows for straightforward probing of cell-ceil communications. Here, we combined surface-enhanced Raman scattering (SERS) nanoprobes with microfluidic networks to monitor in situ the cancer-immune system intercellular communications. The microfluidic platform links up immune cells with cancer cells, where the cancer-cell secretions act as signaling mediators. First, gold@silver core--shell nanorods were employed to fabricate SERS immunoprobes for analysis of the signaling molecules. Multiple cancer secretions in a tumor microenvironment were quantitatively analyzed by a SERS-assisted three-dimensional (3D) barcode immunoassay with high sensitivity (1 ng/mL). Second, in an on-chip cell proliferation assay, multiple immunosuppressive proteins secreted by cancer cells were found to inhibit activation of immune cells, indicating that the platform simulates the physiological process of cancer-immune system communications. Furthermore, potential drug candidates were tested on this platform. A quantitative SERS immunoassay was performed to evaluate drug efficacy at regulating the secretion behavior of cancer cells and the activity of immune cells. This assay showed the suitability of this platform for in vitro drug screening. It is expected that the fully integrated and highly automated SERS-microfluidic platform will become a powerful analytical tool for probing intercellular communications and should accelerate the discovery and clinical validation of novel druKs. 展开更多
关键词 cell-cell communication microfluidic chip surface-enhanced raman scattering (sers barcode immunoassay drug discovery
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部