Advances in metabolic engineering and synthetic biology have facilitated the manufacturing of many valuable-added compounds and commodity chemicals using microbial cell factories in the past decade.However,due to comp...Advances in metabolic engineering and synthetic biology have facilitated the manufacturing of many valuable-added compounds and commodity chemicals using microbial cell factories in the past decade.However,due to complexity of cellular metabolism,the optimization of metabolic pathways for maximal production represents a grand challenge and an unavoidable barrier for metabolic engineering.Recently,cell-free protein synthesis system(CFPS)has been emerging as an enabling alternative to address challenges in biomanufacturing.This review summarizes the recent progresses of CFPS in rapid prototyping of biosynthetic pathways and genetic circuits(biosensors)to speed up design-build-test(DBT)cycles of metabolic engineering and synthetic biology.展开更多
Cell-free synthetic biology emerges as a powerful and flexible enabling technology that can engineer biological parts and systems for life science applications without using living cells.It provides simpler and faster...Cell-free synthetic biology emerges as a powerful and flexible enabling technology that can engineer biological parts and systems for life science applications without using living cells.It provides simpler and faster engineering solutions with an unprecedented freedom of design in an open environment than cell system.This review focuses on recent developments of cell-free synthetic biology on biological engineering fields at molecular and cellular levels,including protein engineering,metabolic engineering,and artificial cell engineering.In cell-free protein engineering,the direct control of reaction conditions in cell-free system allows for easy synthesis of complex proteins,toxic proteins,membrane proteins,and novel proteins with unnatural amino acids.Cell-free systems offer the ability to design metabolic pathways towards the production of desired products.Buildup of artificial cells based on cell-free systems will improve our understanding of life and use them for environmental and biomedical applications.展开更多
Cell-free expression system is a technology for the synthesis of proteins in vitro.The system is a platform for several bioengineering projects,e.g.cell-free metabolic engineering,evolutionary design of experiments,an...Cell-free expression system is a technology for the synthesis of proteins in vitro.The system is a platform for several bioengineering projects,e.g.cell-free metabolic engineering,evolutionary design of experiments,and synthetic minimal cell construction.Bacterial cell-free protein synthesis system(CFPS)is a robust tool for synthetic biology.The bacteria lysate,the DNA,and the energy module,which are the three optimized sub-systems for in vitro protein synthesis,compose the integrated system.Currently,an optimized E.coli cell-free expression system can produce up to^2.3 mg/mL of a fluorescent reporter protein.Herein,I will describe the features of ATP-regeneration systems for in vitro protein synthesis,and I will present a machine-learning experiment for optimizing the protein yield of E.coli cell-free protein synthesis systems.Moreover,I will introduce experiments on the synthesis of a minimal cell using liposomes as dynamic containers,and E.coli cell-free expression system as biochemical platform for metabolism and gene expression.CFPS can be further integrated with other technologies for novel applications in environmental,medical and material science.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.21606205,21576232&21506185)the Fundamental Research Funds for the Central Universities,and the Startup Fund from Zhejiang University.
文摘Advances in metabolic engineering and synthetic biology have facilitated the manufacturing of many valuable-added compounds and commodity chemicals using microbial cell factories in the past decade.However,due to complexity of cellular metabolism,the optimization of metabolic pathways for maximal production represents a grand challenge and an unavoidable barrier for metabolic engineering.Recently,cell-free protein synthesis system(CFPS)has been emerging as an enabling alternative to address challenges in biomanufacturing.This review summarizes the recent progresses of CFPS in rapid prototyping of biosynthetic pathways and genetic circuits(biosensors)to speed up design-build-test(DBT)cycles of metabolic engineering and synthetic biology.
文摘Cell-free synthetic biology emerges as a powerful and flexible enabling technology that can engineer biological parts and systems for life science applications without using living cells.It provides simpler and faster engineering solutions with an unprecedented freedom of design in an open environment than cell system.This review focuses on recent developments of cell-free synthetic biology on biological engineering fields at molecular and cellular levels,including protein engineering,metabolic engineering,and artificial cell engineering.In cell-free protein engineering,the direct control of reaction conditions in cell-free system allows for easy synthesis of complex proteins,toxic proteins,membrane proteins,and novel proteins with unnatural amino acids.Cell-free systems offer the ability to design metabolic pathways towards the production of desired products.Buildup of artificial cells based on cell-free systems will improve our understanding of life and use them for environmental and biomedical applications.
文摘Cell-free expression system is a technology for the synthesis of proteins in vitro.The system is a platform for several bioengineering projects,e.g.cell-free metabolic engineering,evolutionary design of experiments,and synthetic minimal cell construction.Bacterial cell-free protein synthesis system(CFPS)is a robust tool for synthetic biology.The bacteria lysate,the DNA,and the energy module,which are the three optimized sub-systems for in vitro protein synthesis,compose the integrated system.Currently,an optimized E.coli cell-free expression system can produce up to^2.3 mg/mL of a fluorescent reporter protein.Herein,I will describe the features of ATP-regeneration systems for in vitro protein synthesis,and I will present a machine-learning experiment for optimizing the protein yield of E.coli cell-free protein synthesis systems.Moreover,I will introduce experiments on the synthesis of a minimal cell using liposomes as dynamic containers,and E.coli cell-free expression system as biochemical platform for metabolism and gene expression.CFPS can be further integrated with other technologies for novel applications in environmental,medical and material science.