Mesenchymal stem cells(MSCs)are multipotent stem cells with marked potential for regenerative medicine because of their strong immunosuppressive and regenerative abilities.The therapeutic effects of MSCs are based in ...Mesenchymal stem cells(MSCs)are multipotent stem cells with marked potential for regenerative medicine because of their strong immunosuppressive and regenerative abilities.The therapeutic effects of MSCs are based in part on their secretion of biologically active factors in extracellular vesicles known as exosomes.Exosomes have a diameter of 30-100 nm and mediate intercellular communication and material exchange.MSC-derived exosomes(MSC-Exos)have potential for cell-free therapy for diseases of,for instance,the kidney,liver,heart,nervous system,and musculoskeletal system.Hence,MSC-Exos are an alternative to MSCbased therapy for regenerative medicine.We review MSC-Exos and their therapeutic potential for a variety of diseases and injuries.展开更多
Mesenchymal stromal/stem cells(MSCs)have garnered significant attention in the field of regenerative medicine due to their remarkable therapeutic potential.MSCs play a pivotal role in maintaining tissue homeostasis an...Mesenchymal stromal/stem cells(MSCs)have garnered significant attention in the field of regenerative medicine due to their remarkable therapeutic potential.MSCs play a pivotal role in maintaining tissue homeostasis and possess diverse functions in tissue repair and recovery in various organs.These cells are charac-terized by easy accessibility,few ethical concerns,and adaptability to in vitro cultures,making them a valuable resource for cell therapy in several clinical conditions.Over the years,it has been shown that the true therapeutic power of MSCs lies not in cell engraftment and replacement but in their ability to produce critical paracrine factors,including cytokines,growth factors,and exosomes(EXOs),which modulate the tissue microenvironment and facilitate repair and regeneration processes.Consequently,MSC-derived products,such as condi-tioned media and EXOs,are now being extensively evaluated for their potential medical applications,offering advantages over the long-term use of whole MSCs.However,the efficacy of MSC-based treatments varies in clinical trials due to both intrinsic differences resulting from the choice of diverse cell sources and non-standardized production methods.To address these concerns and to enhance MSC therapeutic potential,researchers have explored many priming strategies,including exposure to inflammatory molecules,hypoxic conditions,and three-dimensional culture techniques.These approaches have optimized MSC secretion of functional factors,empowering them with enhanced immunomodulatory,angiogenic,and regenerative properties tailored to specific medical conditions.In fact,various priming strategies show promise in the treatment of numerous diseases,from immune-related disorders to acute injuries and cancer.Currently,in order to exploit the full therapeutic potential of MSC therapy,the most important challenge is to optimize the modulation of MSCs to obtain adapted cell therapy for specific clinical disorders.In other words,to unlock the complete potential of MSCs in regenerative medicine,it is crucial to identify the most suitable tissue source and develop in vitro manipulation protocols specific to the type of disease being treated.展开更多
Ischemic stroke continues to be a leading cause of mortality and morbidity in the world. Despite recent advances in the field of stroke medicine, thrombolysis with recombinant tissue plasminogen activator remains as t...Ischemic stroke continues to be a leading cause of mortality and morbidity in the world. Despite recent advances in the field of stroke medicine, thrombolysis with recombinant tissue plasminogen activator remains as the only pharmacological therapy for stroke patients. However, due to short therapeutic window(4.5 hours of stroke onset) and increased risk of hemorrhage beyond this point, each year globally less than 1% of stroke patients receive this therapy which necessitate the discovery of safe and efficacious therapeutics that can be used beyond the acute phase of stroke. Accumulating evidence indicates that endothelial progenitor cells(EPCs), equipped with an inherent capacity to migrate, proliferate and differentiate, may be one such therapeutics. However, the limited availability of EPCs in peripheral blood and early senescence of few isolated cells in culture conditions adversely affect their application as effective therapeutics. Given that much of the EPC-mediated reparative effects on neurovasculature is realized by a wide range of biologically active substances released by these cells, it is possible that EPC-secretome may serve as an important therapeutic after an ischemic stroke. In light of this assumption, this review paper firstly discusses the main constituents of EPC-secretome that may exert the beneficial effects of EPCs on neurovasculature, and then reviews the currently scant literature that focuses on its therapeutic capacity.展开更多
Stem cell research is a promising area of transplantation and regenerative medicine with tremendous potential for improving the clinical treatment and diagnostic options across a variety of conditions and enhancing un...Stem cell research is a promising area of transplantation and regenerative medicine with tremendous potential for improving the clinical treatment and diagnostic options across a variety of conditions and enhancing understanding of human development.Over the past few decades,mesenchymal stem cell(MSCs)studies have exponentially increased with a promising outcome.However,regardless of the huge investment and the research attention given to stem cell research,FDA approval for clinical use is still lacking.Amid the challenges confronting stem cell research as a cellbased product,there appears to be evidence of superior effect and heightened potential success in its expressed vesicles,exosomes,as cell-free products.In addition to their highly desirable intrinsic biologically unique structural,compositional,and morphological characteristics,as well as predominant physiochemical stability and biocompatibility properties,exosomes can also be altered to enhance their therapeutic capability or diagnostic imaging potential via physical,chemical,and biological modification approaches.More importantly,the powerful therapeutic potential and superior biological functions of exosomes,particularly,regarding engineered exosomes as cell-free products,and their utilization in a new generation of nanomedicine treatment,vaccination,and diagnosis platforms,brings hope of a change in the near future.This viewpoint discusses the trend of stem cell research and why stem cell-derived exosomes could be the game-changer.展开更多
文摘Mesenchymal stem cells(MSCs)are multipotent stem cells with marked potential for regenerative medicine because of their strong immunosuppressive and regenerative abilities.The therapeutic effects of MSCs are based in part on their secretion of biologically active factors in extracellular vesicles known as exosomes.Exosomes have a diameter of 30-100 nm and mediate intercellular communication and material exchange.MSC-derived exosomes(MSC-Exos)have potential for cell-free therapy for diseases of,for instance,the kidney,liver,heart,nervous system,and musculoskeletal system.Hence,MSC-Exos are an alternative to MSCbased therapy for regenerative medicine.We review MSC-Exos and their therapeutic potential for a variety of diseases and injuries.
文摘Mesenchymal stromal/stem cells(MSCs)have garnered significant attention in the field of regenerative medicine due to their remarkable therapeutic potential.MSCs play a pivotal role in maintaining tissue homeostasis and possess diverse functions in tissue repair and recovery in various organs.These cells are charac-terized by easy accessibility,few ethical concerns,and adaptability to in vitro cultures,making them a valuable resource for cell therapy in several clinical conditions.Over the years,it has been shown that the true therapeutic power of MSCs lies not in cell engraftment and replacement but in their ability to produce critical paracrine factors,including cytokines,growth factors,and exosomes(EXOs),which modulate the tissue microenvironment and facilitate repair and regeneration processes.Consequently,MSC-derived products,such as condi-tioned media and EXOs,are now being extensively evaluated for their potential medical applications,offering advantages over the long-term use of whole MSCs.However,the efficacy of MSC-based treatments varies in clinical trials due to both intrinsic differences resulting from the choice of diverse cell sources and non-standardized production methods.To address these concerns and to enhance MSC therapeutic potential,researchers have explored many priming strategies,including exposure to inflammatory molecules,hypoxic conditions,and three-dimensional culture techniques.These approaches have optimized MSC secretion of functional factors,empowering them with enhanced immunomodulatory,angiogenic,and regenerative properties tailored to specific medical conditions.In fact,various priming strategies show promise in the treatment of numerous diseases,from immune-related disorders to acute injuries and cancer.Currently,in order to exploit the full therapeutic potential of MSC therapy,the most important challenge is to optimize the modulation of MSCs to obtain adapted cell therapy for specific clinical disorders.In other words,to unlock the complete potential of MSCs in regenerative medicine,it is crucial to identify the most suitable tissue source and develop in vitro manipulation protocols specific to the type of disease being treated.
文摘Ischemic stroke continues to be a leading cause of mortality and morbidity in the world. Despite recent advances in the field of stroke medicine, thrombolysis with recombinant tissue plasminogen activator remains as the only pharmacological therapy for stroke patients. However, due to short therapeutic window(4.5 hours of stroke onset) and increased risk of hemorrhage beyond this point, each year globally less than 1% of stroke patients receive this therapy which necessitate the discovery of safe and efficacious therapeutics that can be used beyond the acute phase of stroke. Accumulating evidence indicates that endothelial progenitor cells(EPCs), equipped with an inherent capacity to migrate, proliferate and differentiate, may be one such therapeutics. However, the limited availability of EPCs in peripheral blood and early senescence of few isolated cells in culture conditions adversely affect their application as effective therapeutics. Given that much of the EPC-mediated reparative effects on neurovasculature is realized by a wide range of biologically active substances released by these cells, it is possible that EPC-secretome may serve as an important therapeutic after an ischemic stroke. In light of this assumption, this review paper firstly discusses the main constituents of EPC-secretome that may exert the beneficial effects of EPCs on neurovasculature, and then reviews the currently scant literature that focuses on its therapeutic capacity.
文摘Stem cell research is a promising area of transplantation and regenerative medicine with tremendous potential for improving the clinical treatment and diagnostic options across a variety of conditions and enhancing understanding of human development.Over the past few decades,mesenchymal stem cell(MSCs)studies have exponentially increased with a promising outcome.However,regardless of the huge investment and the research attention given to stem cell research,FDA approval for clinical use is still lacking.Amid the challenges confronting stem cell research as a cellbased product,there appears to be evidence of superior effect and heightened potential success in its expressed vesicles,exosomes,as cell-free products.In addition to their highly desirable intrinsic biologically unique structural,compositional,and morphological characteristics,as well as predominant physiochemical stability and biocompatibility properties,exosomes can also be altered to enhance their therapeutic capability or diagnostic imaging potential via physical,chemical,and biological modification approaches.More importantly,the powerful therapeutic potential and superior biological functions of exosomes,particularly,regarding engineered exosomes as cell-free products,and their utilization in a new generation of nanomedicine treatment,vaccination,and diagnosis platforms,brings hope of a change in the near future.This viewpoint discusses the trend of stem cell research and why stem cell-derived exosomes could be the game-changer.