A parallel algorithm suitable for simulating multi-sized particle systems and multi- phase fluid systems is proposed based on macro-scale pseudo-particle modeling (MaPPM). The algorithm employs space-decomposition of ...A parallel algorithm suitable for simulating multi-sized particle systems and multi- phase fluid systems is proposed based on macro-scale pseudo-particle modeling (MaPPM). The algorithm employs space-decomposition of the computational load among the processing ele- ments (PEs) and multi-level cell-subdivision technique for particle indexing. In this algorithm, a 2D gas-solid system is simulated with the temporal variations of drags on solids, inter-phase slip velocities and solids concentration elaborately monitored. Analysis of the results shows that the algorithm is of good parallel efficiency and scalability, demonstrating the unique advantage of MaPPM in simulating complex flows.展开更多
基金This work was supported by the National Key Program for Developing Basic Sciences(Grant No.G1999032801)the National Natural Science Foundation of China(Grant Nos.20336040and 20221603)the Chinese Academy of Sciences(Grant No.INF105-SCE-2-07).
文摘A parallel algorithm suitable for simulating multi-sized particle systems and multi- phase fluid systems is proposed based on macro-scale pseudo-particle modeling (MaPPM). The algorithm employs space-decomposition of the computational load among the processing ele- ments (PEs) and multi-level cell-subdivision technique for particle indexing. In this algorithm, a 2D gas-solid system is simulated with the temporal variations of drags on solids, inter-phase slip velocities and solids concentration elaborately monitored. Analysis of the results shows that the algorithm is of good parallel efficiency and scalability, demonstrating the unique advantage of MaPPM in simulating complex flows.