期刊文献+
共找到182篇文章
< 1 2 10 >
每页显示 20 50 100
An overview of autophagy in the differentiation of dental stem cells
1
作者 XITONG ZHAO TIANJUAN JU +3 位作者 XINWEI LI CHANGFENG LIU LULU WANG LI-AN WU 《BIOCELL》 SCIE 2024年第1期47-64,共18页
Dental stem cells(DSCs)have attracted significant interest as autologous stem cells since they are easily accessible and give a minimal immune response.These properties and their ability to both maintain self-renewal ... Dental stem cells(DSCs)have attracted significant interest as autologous stem cells since they are easily accessible and give a minimal immune response.These properties and their ability to both maintain self-renewal and undergo multi-lineage differentiation establish them as key players in regenerative medicine.While many regulatory factors determine the differentiation trajectory of DSCs,prior research has predominantly been based on genetic,epigenetic,and molecular aspects.Recent evidence suggests that DSC differentiation can also be influenced by autophagy,a highly conserved cellular process responsible for maintaining cellular and tissue homeostasis under various stress conditions.This comprehensive review endeavors to elucidate the intricate regulatory mechanism and relationship between autophagy and DSC differentiation.To achieve this goal,we dissect the intricacies of autophagy and its mechanisms.Subsequently,we elucidate its pivotal roles in impacting DSC differentiation,including osteo/odontogenic,neurogenic,and angiogenic trajectories.Furthermore,we reveal the regulatory factors that govern autophagy in DSC lineage commitment,including scaffold materials,pharmaceutical cues,and the extrinsic milieu.The implications of this review are far-reaching,underpinning the potential to wield autophagy as a regulatory tool to expedite DSC-directed differentiation and thereby promote the application of DSCs within the realm of regenerative medicine. 展开更多
关键词 Dental stem cells Cell differentiation AUTOPHAGY MITOPHAGY Autophagy regulation
下载PDF
Maintaining moderate levels of hypochlorous acid promotes neural stem cell proliferation and differentiation in the recovery phase of stroke
2
作者 Lin-Yan Huang Yi-De Zhang +9 位作者 Jie Chen Hai-Di Fan Wan Wang Bin Wang Ju-Yun Ma Peng-Peng Li Hai-Wei Pu Xin-Yian Guo Jian-Gang Shen Su-Hua Qi 《Neural Regeneration Research》 SCIE CAS 2025年第3期845-857,共13页
It has been shown clinically that continuous removal of ischemia/reperfusion-induced reactive oxygen species is not conducive to the recovery of late stroke.Indeed,previous studies have shown that excessive increases ... It has been shown clinically that continuous removal of ischemia/reperfusion-induced reactive oxygen species is not conducive to the recovery of late stroke.Indeed,previous studies have shown that excessive increases in hypochlorous acid after stroke can cause severe damage to brain tissue.Our previous studies have found that a small amount of hypochlorous acid still exists in the later stage of stroke,but its specific role and mechanism are currently unclear.To simulate stroke in vivo,a middle cerebral artery occlusion rat model was established,with an oxygen-glucose deprivation/reoxygenation model established in vitro to mimic stroke.We found that in the early stage(within 24 hours)of ischemic stroke,neutrophils produced a large amount of hypochlorous acid,while in the recovery phase(10 days after stroke),microglia were activated and produced a small amount of hypochlorous acid.Further,in acute stroke in rats,hypochlorous acid production was prevented using a hypochlorous acid scavenger,taurine,or myeloperoxidase inhibitor,4-aminobenzoic acid hydrazide.Our results showed that high levels of hypochlorous acid(200μM)induced neuronal apoptosis after oxygen/glucose deprivation/reoxygenation.However,in the recovery phase of the middle cerebral artery occlusion model,a moderate level of hypochlorous acid promoted the proliferation and differentiation of neural stem cells into neurons and astrocytes.This suggests that hypochlorous acid plays different roles at different phases of cerebral ischemia/reperfusion injury.Lower levels of hypochlorous acid(5 and 100μM)promoted nuclear translocation ofβ-catenin.By transfection of single-site mutation plasmids,we found that hypochlorous acid induced chlorination of theβ-catenin tyrosine 30 residue,which promoted nuclear translocation.Altogether,our study indicates that maintaining low levels of hypochlorous acid plays a key role in the recovery of neurological function. 展开更多
关键词 cell differentiation cerebral ischemia/reperfusion injury CHLORINATION hypochlorous acid MICROGLIA neural stem cell NEUROGENESIS nuclear translocation stroke β-catenin
下载PDF
In vitro culture and differentiation of rat embryonic midbrain-derived neural stem cells 被引量:19
3
作者 Xingli Deng Ruen Liu +5 位作者 Zhongtang Feng Jing Guo Wu Wang Deqiang Lei Hongyan Li Zhihua Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第11期1241-1244,共4页
BACKGROUND: Midbrain-derived neural stem cells (mNSCs) can differentiate into functional mature dopaminergic neurons. The mNSCs are considered the ideal choice for cell therapy of Parkinson's disease. OBJECTIVE: ... BACKGROUND: Midbrain-derived neural stem cells (mNSCs) can differentiate into functional mature dopaminergic neurons. The mNSCs are considered the ideal choice for cell therapy of Parkinson's disease. OBJECTIVE: To isolate rat embryonic mNSCs and to observe the differentiation characteristics of mNSCs induced by cell growth-promoting factors. DESIGN, TIME AND SETTING: An in vitro cell culture study based on the molecular biology of nerve cells was carried out at the Institute of Clinical Medicine, China-Japan Friendship Hospital (China) from March to November 2007. MATERIALS: Sprague Dawley rats at embryonic day 14 were used in this study. Nestin antibody, β-Ⅲ tubulin antibody, glial fibrillary acidic protein (GFAP) antibody and cyclic nucleotide 3'-phosphohydrolase (CNPase) antibody were provided by Abcam; DMEM/F12 medium and N2 supplement were provided by Invitrogen; epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF2) were provided by R&D Systems. METHODS: The ventral mesencephalon was dissected from embryonic day 14 rat embryos. By trypsin digestion and mechanical separation, the brain tissue was triturated into a fine single-cell suspension. The cells were cultured in 5 mL serum-free medium containing DMEM/FI 2, 1% N: supplement, 20 ng/mL EGF and FGF2. The mNSCs at the third generation were coated with 10ug/mL polylysine and induced to differentiate in the DMEM/F12 supplemented with 1% fetal bovine serum and 1% N2. MAIN OUTCOME MEASURES: The neural spheres of the third passage were identified by nestin immunofluorescence; at the same time, the cells were induced to differentiate, and the types of differentiated cell were identified by immunofluorescence for β Ⅲ tubulin, GFAP and CNPase. RESULTS: Seven days after primary culture, a great many neurospheres could be obtained by successive pasage. Immunofluorescence assays showed that the neurospheres were nestin positive, and after differentiation, the cells expressed GFAP, CNPase and β -Ⅲ-tubulin. CONCLUSION: Embryonic day 14 rat mNSCs can differentiate into neuron-like cells and glial cells following induction by EGF, FGF2 and N: additive. 展开更多
关键词 neural stem cells cell differentiation in vitro rat embryonic midbrain
下载PDF
Experimental Study of Cell Migration and Functional Differentiation of Transplanted Neural Stem Cells Co-labeled with Superparamagnetic Iron Oxide and Brdu in an Ischemic Rat Model 被引量:8
4
作者 WEN-ZHEN ZHU XIANG LI +4 位作者 JIAN-PIN QI ZHOU-PING TANG WEI WANG LI WEI AND HAO LEI 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2008年第5期420-424,共5页
Objective To explore the migration of transplanted neural stem cells co-labeled with superparamagnetic iron oxide (SPIO) and bromodeoxyuridine (Brdu) using the 4.7T MR system and to study the cell differentiation ... Objective To explore the migration of transplanted neural stem cells co-labeled with superparamagnetic iron oxide (SPIO) and bromodeoxyuridine (Brdu) using the 4.7T MR system and to study the cell differentiation with immuno-histochemical method in ischemic rats. Methods Rat neural stem cells (NSCs) co-labelled with SPIO mediated by poly-L-lysine and bromodeoxyuridine (BrdU) were transplanted into the unaffected side of rat brain with middle cerebral artery occlusion (MCAO). At weeks 1, 2, 3, 4, 5, and 6 after MCAO, migration of the labelled cells was monitored by MRI. At week 6 the rats were killed and their brain tissue was cut according to the migration site of transplanted ceils indicated by MRI and subjected to Prussian blue staining and immunohistochemical staining to observe the migration and differentiation of the transplanted NSCs. Results Three weeks after transplantation, the linear hypointensity area derived from the migration of labelled NSCs was observed by MRI in the corpus callosum adjacent to the injection site. Six weeks after the transplantation, the linear hypointensity area was moved toward the midline along the corpus callosum. MRI findings were confirmed by Prussian blue staining and immunohistochemical staining of the specimen at week 6 after the transplantation. Flourescence co-labelled immunohistochemical methods demonstrated that the transplanted NSCs could differentiate into astrocytes and neurons. Conclusion MRI can monitor the migration of SPIO-labelled NSCs after transplantation in a dynamical and non-invasive manner. NSCs transplanted into ischemic rats can differentiate into astrocytes and neurons during the process of migration. 展开更多
关键词 Stem cell transplantation Magnetic resonance imaging Staining and Labelling Cell migration Cell differentiation
下载PDF
Differentiation of Mesenchymal Stem Cells towards a Nucleus Pulposus-like Phenotype Utilizing Simulated Microgravity In Vitro 被引量:9
5
作者 罗伟 熊伟 +3 位作者 邱敏 吕永威 李勇 李锋 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2011年第2期199-203,共5页
Mesenchymal stem cells (MSCs) were induced into a nucleus pulposus-like phenotype utilizing simulated microgravity in vitro in order to establish a new cell-based tissue engineering treatment for intervertebral disc... Mesenchymal stem cells (MSCs) were induced into a nucleus pulposus-like phenotype utilizing simulated microgravity in vitro in order to establish a new cell-based tissue engineering treatment for intervertebral disc degeneration. For induction of a nucleus pulposus-like phenotype, MSCs were cultured in simulated microgravity in a chemically defined medium supplemented with 0 (experimental group) and 10 ng/mL (positive control group) of transforming growth factor β1 (TGF-β1). MSCs cultured under conventional condition without TGF-β1 served as blank control group. On the day 3 of culture, cellular proliferation was determined by WST-8 assay. Differentiation markers were evaluated by histology and reverse transcriptase-polymerase chain reaction (RT-PCR). TGF-β1 slightly promoted the proliferation of MSCs. The collagen and proteoglycans were detected in both groups after culture for 7 days. The accumulation of proteoglycans was markedly increased. The RT-PCR revealed that the gene expression of Sox-9, aggrecan and type Ⅱ collagen, which were chondrocyte specific, was increased in MSCs cultured under simulated microgravity for 3 days. The ratio of proteoglycans/collagen in blank control group was 3.4-fold higher than positive control group, which denoted a nucleus pulposus-like phenotype differentiation. Independent, spontaneous differentiation of MSCs towards a nucleus pulposus-like phenotype in simulated microgravity occurred without addition of any external bioactive stimulators, namely factors from TGF-β family, which were previously considered necessary. 展开更多
关键词 mesenchymal stem cells simulated microgravity cell differentiation transforming growth factor β1
下载PDF
Human hair follicle-derived mesenchymal stem cells:Isolation,expansion,and differentiation 被引量:8
6
作者 Bo Wang Xiao-Mei Liu +6 位作者 Zi-Nan Liu Yuan Wang Xing Han Ao-Bo Lian Ying Mu Ming-Hua Jin Jin-Yu Liu 《World Journal of Stem Cells》 SCIE CAS 2020年第6期462-470,共9页
Hair follicles are easily accessible skin appendages that protect against cold and potential injuries.Hair follicles contain various pools of stem cells,such as epithelial,melanocyte,and mesenchymal stem cells(MSCs)th... Hair follicles are easily accessible skin appendages that protect against cold and potential injuries.Hair follicles contain various pools of stem cells,such as epithelial,melanocyte,and mesenchymal stem cells(MSCs)that continuously self-renew,differentiate,regulate hair growth,and maintain skin homeostasis.Recently,MSCs derived from the dermal papilla or dermal sheath of the human hair follicle have received attention because of their accessibility and broad differentiation potential.In this review,we describe the applications of human hair follicle-derived MSCs(hHF-MSCs)in tissue engineering and regenerative medicine.We have described protocols for isolating hHF-MSCs from human hair follicles and their culture condition in detail.We also summarize strategies for maintaining hHF-MSCs in a highly proliferative but undifferentiated state after repeated in vitro passages,including supplementation of growth factors,3D suspension culture technology,and 3D aggregates of MSCs.In addition,we report the potential of hHF-MSCs in obtaining induced smooth muscle cells and tissue-engineered blood vessels,regenerated hair follicles,induced red blood cells,and induced pluripotent stem cells.In summary,the abundance,convenient accessibility,and broad differentiation potential make hHF-MSCs an ideal seed cell source of regenerative medical and cell therapy. 展开更多
关键词 Human hair follicle Regenerative therapy Mesenchymal stem cell Tissue engineering Cell differentiation
下载PDF
Elastic modulus affects the growth and differentiation of neural stem cells 被引量:4
7
作者 Xian-feng Jiang Kai Yang +4 位作者 Xiao-qing Yang Ying-fu Liu Yuan-chi Cheng Xu-yi Chen Yue Tu 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第9期1523-1527,共5页
It remains poorly understood if carrier hardness, elastic modulus, and contact area affect neural stem cell growth and differentiation. Tensile tests show that the elastic moduli of Tiansu and SMI silicone membranes a... It remains poorly understood if carrier hardness, elastic modulus, and contact area affect neural stem cell growth and differentiation. Tensile tests show that the elastic moduli of Tiansu and SMI silicone membranes are lower than that of an ordinary dish, while the elastic modulus of SMI silicone membrane is lower than that of Tiansu silicone membrane. Neural stem cells from the cerebral cortex of embryonic day 16 Sprague-Dawley rats were seeded onto ordinary dishes as well as Tiansu silicone membrane and SMI silicone membrane. Light microscopy showed that neural stem cells on all three carriers show improved adherence. After 7 days of differentiation, neuron specific enolase, glial fibrillary acidic protein, and myelin basic protein expression was detected by immunofluorescence. Moreover, flow cytometry revealed a higher rate of neural stem cell differentiation into astrocytes on Tiansu and SMI silicone membranes than on the ordinary dish, which was also higher on the SMI than the Tiansu silicone membrane. These findings con- firm that all three cell carrier types have good biocompatibility, while SMI and Tiansu silicone membranes exhibit good mechanical homogenization. Thus, elastic modulus affects neural stem cell differentiation into various nerve cells. Within a certain range, a smaller elastic modulus re- sults in a more obvious trend of cell differentiation into astrocytes. 展开更多
关键词 nerve regeneration neural stem cells CARRIER mechanical properties elastic modulus cell differentiation NEURONS IMMUNOFLUORESCENCE ASTROCYTES neural regeneration
下载PDF
Human umbilical cord Wharton's Jelly-derived mesenchymal stem cells differentiation into nerve-like cells 被引量:103
8
作者 MA Lian FENG Xue-yong +5 位作者 CUI Bing-lin Frieda Law JIANG Xue-wu YANG Li-ye XIE Qing-dong HUANG Tian-hua 《Chinese Medical Journal》 SCIE CAS CSCD 2005年第23期1987-1993,共7页
Background The two most basic properties of mesenchymal stem cells (MSCs) are the capacities to selfrenew indefinitely and differentiate into multiple cells and tissue types. The cells from human umbilical cord Whar... Background The two most basic properties of mesenchymal stem cells (MSCs) are the capacities to selfrenew indefinitely and differentiate into multiple cells and tissue types. The cells from human umbilical cord Wharton' s Jelly have properties of MSCs and represent a rich source of primitive cells. This study was conducted to explore the possibility of inducing human umbilical cord Wharton' s Jelly-derived MSCs to differentiate into nerve-like cells.Methods MSCs were cultured from the Wharton' s Jelly taken from human umbilical cord of babies delivered after full-term normal labor. Salvia miltiorrhiza and [3-mercaptoethanol were used to induce the human umbilical cord-derived MSCs to differentiate The expression of neural protein markers was shown by immunocytochemistry. The induction process was monitored by phase contrast microscopy, electron microscopy (EM), and laser scanning confocal microscopy (LSCM) . The pleiotrophin and nestin genes were measured by reverse transcription-polymerase chain reaction (RT-PCR).Results MSCs in the Wharton' s Jelly were easily attainable and could be maintained and expanded in culture. They were positive for markers of MSCs, but negative for markers of hematopoietic cells and graft-versus-host disease (GVHD)-related cells. Treatment with Salvia mihiorrhiza caused Wharton' s Jelly cells to undergo profound morphological changes. The induced MSCs developed rounded cell bodies with multiple neurite-like extensions. Eventually they developed processes that formed networks reminiscent of primary cultures of neurons. Salvia mihiorrhiza and β-mercaptoethanol also induced MSCs to express nestin, β-tubulin Ⅲ, neurofilament (NF) and glial fibrillary acidic protein (GFAP). It was confirmed by RT-PCR that MSCs could express pleiotrophin both before and after induction by Salvia miltiorrhiza. The expression was markedly enhanced after induction and the nestin gene was also expressed.Conclusions MSCs could be isolated from human umbilical cord Wharton' s Jelly. They were capable ofdifferentiating into nerve-like cells using Salvia miltiorrhiza or 15-mercaptoethanol. The induced MSCs not only underwent morphologic changes, but also expressed the neuron-related genes and neuronal cell markers. They may represent an alternative source of stem cells for central nervous system cell transplantation. 展开更多
关键词 Wharton' s Jelly · mesenchymal stem cells ·differentiation ·nerve cells· Salvia miltiorrhiza
原文传递
Total saponins of Panax ginseng effects on proliferation and differentiation of human embryonic neural stem cells and in a Parkinson's disease mouse model 被引量:3
9
作者 Yingbo Li Shali Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第3期186-193,共8页
BACKGROUND: Total saponins of Panax ginseng (TSPG) exhibits neuroprotection against Parkinson's disease in the substantia nigra. OBJECTIVE: To investigate the effects of TSPG on human embryonic neural stem cells ... BACKGROUND: Total saponins of Panax ginseng (TSPG) exhibits neuroprotection against Parkinson's disease in the substantia nigra. OBJECTIVE: To investigate the effects of TSPG on human embryonic neural stem cells (NSCs) proliferation and differentiation into dopaminergic neurons using in vitro studies, and to observe NSC differentiation in a mouse model of Parkinson's disease, as well as behavioral changes before and after transplantation. DESIGN, TIME AND SETTING: In vitro neural cell biology trial and in vivo randomized, controlled animal trial were performed at the Institute of Basic Medical Sciences, Chongqing Medical University between September 2004 and December 2007. MATERIALS: TSPG (purity 〉 95%) was isolated, extracted, and identified by Chongqing Academy of Chinese Materia Medica. Recombinant human basic fibroblast growth factor (bFGF) and recombinant human epidermal growth factor (EGF) were purchased from PeproTech, USA. A total of 25 C57/BL6J mice, aged 18-20 weeks were included. Twenty were used to establish a Parkinson's disease model with i.p. injection of MPTP (1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine) and TSPG alone or combined with interleukin-1 (IL-1)-treated NSCs prior to transplantation into the corpus striatum. The remaining five mice were pretreated for 3 days with TSPG prior to MPTP injection, serving as the TSPG prevention group. METHODS: Primary NSCs were isolated, cultured and purified from embryonic cerebral cortex. Immunocytochemistry was employed to detect specific antigen expression in the NSCs. In vitro experiment: (1) to induce proliferation, NSCs were treated with TSPG, EGF+bFGF, or TSPG+EGF+bFGF, respectively; (2) to induce dopaminergic neuronal differentiation, NSCs were treated with TSPG, IL-1, or TSPG+IL-1, respectively. MAIN OUTCOME MEASURES: In vitro experiment: the effects of TSPG on NSCs proliferation were evaluated with flow cytometry and MTT assay. Tyrosine hydroxylase expression was determined by immunocytochemistry assay to observe effects of TSPG on dopaminergic neuronal differentiation. In vivo experiment: differentiation of grafted NSCs in the mouse brain was determined by immunohistochemical staining. Behavioral changes were evaluated by spontaneous activity frequency, memory function, and score of paralysis agitans. RESULTS: (1) NSCs were cultured and passaged for more than three passages. Immunocytochemistry revealed positive nestin staining, as well as neurofilament protein and glial fibrillary acidic protein. (2) TSPG significantly increased NSC proliferation, in particular when combined with EGF and bFGF, which was twice as effective as FGF or bFGF alone. TSPG also induced dopaminergic differentiation in NSCs, in particular when TSPG was added together with IL-1, resulting in an effect five times greater than that of IL-1 alone. (3) At day 30 following transplantation, most NSCs in the TSPG prevention group differentiated into dopaminergic neurons, and the scores of paralysis agitans, spontaneous activity, and memory function were significantly increased compared with TSPG alone or TSPG+IL-1 groups (P 〈 0.05). CONCLUSION: TSPG stimulated NSC proliferation, in particular when combined with FGF and bFGF. TSPG significantly induced dopaminergic neuronal differentiation of NSCs, and the effect was greater when combined with IL-1. In addition, TSPG greatly improved behavior in the Parkinson's disease mouse model following NSC transplantation. Following NSC transplantation, TSPG pretreatment exhibited superior efficacy over either TSPG alone or TSPG in combination with IL-1, in terms of behavioral improvements in the Parkinson's disease mouse model. 展开更多
关键词 total saponins of Panax ginseng neural stem cells human embryo cerebral cortex cell differentiation cell transplantation Parkinson's disease MOUSE
下载PDF
Differentiation potential of human adipose tissue derived stem cells into photoreceptors through explants culture and enzyme methods 被引量:3
10
作者 Wei-Wei Xu Li Huang +5 位作者 Kelvin K.L.Chong Doreen S.Y.Leung Benjamin EL.Li Zheng-Qin Yin Yi-Fei Huang Chi Pui Pang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2017年第1期23-29,共7页
AIM: To investigate the retinal photoreceptor differentiation potential of human orbital adipose tissue-derived stem cells (ADSCs) generated by enzyme (EN) and explant (EX) culture methods.METHODS: We investig... AIM: To investigate the retinal photoreceptor differentiation potential of human orbital adipose tissue-derived stem cells (ADSCs) generated by enzyme (EN) and explant (EX) culture methods.METHODS: We investigated potentials of human orbital ADSCs to differentiate into photoreceptors through EN and EX culture methods. EN and EX orbital ADSCs were obtained from the same donor during rehabilitative orbital decompression, and then were subject to a 3-step induction using Noggin, DKK-1, IGF-1 and b-FGF at different time points for 38d. Stem cell, eye-field and photoreceptor-related gene and protein markers were measured by reverse transcription-polymerase chain reaction (RT-PCR) and immunofluorescent (IMF) staining.RESULTS: Both EX and EN orbital ADSCs expressed CD133, a marker of cell differentiation. Moreover, PAX6 and rhodopsin, markers of the retinal progenitor cells, were detected from EX and EN orbital ADSCs. In EX orbital ADSCs, PAX6 mRNA was detected on the 17th day and then the rhodopsin mRNA was detected on the 24th day. In contrast, the EN orbital ADSCs expressed PAX6 and rhodopsin mRNA on the 31st day. EX orbital ADSCs expressed rhodopsin protein on the 24th day, while EN orbital ADSCs expressed rhodopsin protein on the 31st day. CONCLUSION: Orbital ADSCs isolated by direct explants culture show earlier and stronger expressions of markers towards eye field and retinal photoreceptor differentiation than those generated by conventional EN method. 展开更多
关键词 photoreceptor cells cell differentiation adultstem cells tissue engineering explants culture enzymaticdigestion
下载PDF
Neural cell co-culture induced differentiation of bone marrow mesenchymal stem cells into neuronal-like cells 被引量:3
11
作者 Nailong Yang Lili Xu Fen Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第6期581-584,共4页
BACKGROUND: It has been previously demonstrated that the neural cell microenvironment has the ability to induce differentiation of bone marrow mesenchymal stem cells (BMSCs) into the neural cells. OBJECTIVE: To es... BACKGROUND: It has been previously demonstrated that the neural cell microenvironment has the ability to induce differentiation of bone marrow mesenchymal stem cells (BMSCs) into the neural cells. OBJECTIVE: To establish a co-culture system of human BMSCs and neural cells, and to observe effects of this co-culture system on differentiation of human BMSCs into neural cells. DESIGN, TIME AND SETTING: A comparative observation experiment, performed at the Center Labora-tory of the Affiliated Hospital of Medical College Qingdao University from October 2006 to December 2007. MATERIALS: Neural cells were obtained from human fetal brain tissue. BMSCs were harvested from fe-male patients that underwent autonomous stem cell transplantation. METHODS: BMSCs in the co-culture group consisted of BMSCs and third passage neural cells. BMSCs in the control group were solely cultured in vitro. MAIN OUTCOME MEASURES: Morphological changes of BMSCs were observed, and expression of the neuronal specific marker, neuron-specific enolase (NSE), was analyzed by immunofluorescence staining after 4-5-day co-culture. RESULTS: The number of neural cells in the co-culture group increased and the cells spread on the culture bottle surface. Radial dendrite formed and connected with each other. NSE-immunoreactive cells were also detected. The positive ratio of NSE-positive cells reached (32.7±11.5)%, with morphological characteristics similar to neuronal cells. Human BMSCs did not express NSE in the control group. CONCLUSION: The microenvironment provided by neurons induced differentiation of BMSCs into neu-ronal-like cells. 展开更多
关键词 bone marrow mesenchymal stem cells stem cell transplantation cell differentiation NEURONS
下载PDF
Influence of donor age on the differentiation and division capacity of human adipose-derived stem cells 被引量:3
12
作者 Cintia DS Horinouchi María Julia Barisón +3 位作者 Anny W Robert Crisciele Kuligovski Alessandra M Aguiar BrunoDallagiovanna 《World Journal of Stem Cells》 SCIE 2020年第12期1640-1651,共12页
BACKGROUND Human adipose-derived stromal/stem cells(hASCs)are one of the most useful types of mesenchymal stromal/stem cells,which are adult multipotent cells with great therapeutic potential for the treatment of seve... BACKGROUND Human adipose-derived stromal/stem cells(hASCs)are one of the most useful types of mesenchymal stromal/stem cells,which are adult multipotent cells with great therapeutic potential for the treatment of several diseases.However,for successful clinical application,it is critical that high-quality cells can be obtained.Diverse factors seem to be able to influence cell quality and performance,especially factors related to donors’intrinsic characteristics,such as age.Nevertheless,there is no consensus regarding this characteristic,and there is conflicting information in the literature.AIM To investigate the growth kinetics and differentiation potential of adipose-derived stem cells isolated from the lipoaspirates of elderly and young donors.METHODS hASCs were harvested from liposuctioned adipose tissue obtained from female donors(aged 20-70 years).Cells were distributed into two groups according to age range:old hASCs(oASCs,≥55 years,n=9)and young hASCs(yASCs,≤35 years,n=9).For each group,immunophenotypic characterization was performed by flow cytometry.Population doubling time was assessed over seven days.For adipogenic potential evaluation,lipid deposits were assessed after 7 d,14 d and 21 d of adipogenic induction.Osteogenic potential was verified by analyzing cell mineralization after 14 d,21 d and 28 d of osteogenic induction.mRNA expression of PPARγ2,CEBPA and Runx2 were detected by quantitative reverse transcription polymerase chain reaction.RESULTS hASCs were successfully obtained,cultured,and grouped according to their age:yASCs(26.33±4.66 years old)and oASCs(64.78±4.58 years old).After maintenance of the cells in culture,there were no differences in morphology between cells from the young and old donors.Additionally,both groups showed classical immunophenotypic characteristics of mesenchymal stem/stromal cells.The average doubling time indicated that yASCs(4.09±0.94 d)did not significantly differ from oASCs(4.19±1.29 d).Concerning differentiation potential,after adipogenic and osteogenic induction,yASCs and oASCs were able to differentiate to greater levels than the noninduced control cells.However,no differences were found in the differentiation efficiency of yASCs and oASCs in adipogenesis or osteogenesis.Additionally,the mRNA expression of PPARγ2,CEBPA and Runx2 were similar in yASCs and oASCs.CONCLUSION Our findings suggest that age does not seem to significantly affect the cell division or adipogenic or osteogenic differentiation ability of adipose-derived stem cells isolated from lipoaspirates. 展开更多
关键词 Adipose-derived stem cells Stem cells ADIPOGENESIS OSTEOGENESIS Cell differentiation Donor age
下载PDF
Epigenetic regulation by long noncoding RNAs in osteo-/adipogenic differentiation of mesenchymal stromal cells and degenerative bone diseases 被引量:3
13
作者 Kai Xia Li-Yuan Yu +2 位作者 Xin-Qi Huang Zhi-He Zhao Jun Liu 《World Journal of Stem Cells》 SCIE 2022年第1期92-103,共12页
Bone is a complex tissue that undergoes constant remodeling to maintain homeostasis,which requires coordinated multilineage differentiation and proper proliferation of mesenchymal stromal cells(MSCs).Mounting evidence... Bone is a complex tissue that undergoes constant remodeling to maintain homeostasis,which requires coordinated multilineage differentiation and proper proliferation of mesenchymal stromal cells(MSCs).Mounting evidence indicates that a disturbance of bone homeostasis can trigger degenerative bone diseases,including osteoporosis and osteoarthritis.In addition to conventional genetic modifications,epigenetic modifications(i.e.,DNA methylation,histone modifications,and the expression of noncoding RNAs)are considered to be contributing factors that affect bone homeostasis.Long noncoding RNAs(lncRNAs)were previously regarded as‘transcriptional noise’with no biological functions.However,substantial evidence suggests that lncRNAs have roles in the epigenetic regulation of biological processes in MSCs and related diseases.In this review,we summarized the interactions between lncRNAs and epigenetic modifiers associated with osteo-/adipogenic differentiation of MSCs and the pathogenesis of degenerative bone diseases and highlighted promising lncRNA-based diagnostic and therapeutic targets for bone diseases. 展开更多
关键词 Long noncoding RNA EPIGENETICS DNA methylation HISTONES Cell differentiation Bone diseases
下载PDF
Differentiation Character of Adult Mesenchymal Stem Cells andTransfection of MSCs with Lentiviral Vectors 被引量:3
14
作者 张夏毅 李劲松 +4 位作者 聂君 江科 郑志坤 王建军 沈霖 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2010年第6期687-693,共7页
This study examined the differentiation character and pluripotency of mesenchymal stem cells (MSCs) under different conditions. Adult MSCs were initially isolated from the bone marrow of rats, cultured in vitro and id... This study examined the differentiation character and pluripotency of mesenchymal stem cells (MSCs) under different conditions. Adult MSCs were initially isolated from the bone marrow of rats, cultured in vitro and identified by flow cytometry. After MSCs were transferred to osteogenic and adipogenic medium respectively, the morphological characterization of induced cells was observed. The expression of marker genes was detected by RT-PCR analysis. Then MSCs were transfected with lenti- viral vectors pGC-FU-Sox9-EGFP. Enhanced green fluorescence protein (EGFP) expression and trans- fection efficiency were determined by fluorescence microscopy. The results demonstrated that EGFP caused no effect on the multilineage potential of adult MSCs. Sox9 gene expression of high level was maintained stable in the transfected MSCs and induced MSCs to differentiate into chondrocytes. Ag- gracan was positive in chondrogenic lineages and the expression of aggracan and type Ⅱ collagenwas significantly increased during MSCs chondrogenic differentiation. It was concluded that Sox9 gene-modified adult MSCs may be promising candidate cells for further studies on tissue engineering. EGFP facilitates the research on MSCs physiological behavior and application in tissue engineering during differentiation both in vitro and in vivo. 展开更多
关键词 mesenchymal stem cells cell differentiation lentiviral vectors
下载PDF
Tissue Extracts From Infarcted Myocardium of Rats in Promoting the Differentiation of Bone Marrow Stromal Cells Into Cardiomyocyte-like Cells 被引量:2
15
作者 XIAO-NING LIU Oi YIN +4 位作者 HAO ZHANG HONG ZHANG SHEN-JUN ZHU YING-Jie WEI SHENG-SHOU HU 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2008年第2期110-117,共8页
Objective To investigate whether cardiac tissue extracts from rats could mimic the cardiac microenvironment and act as a natural inducer in promoting the differentiation of bone marrow stromal cells (BMSCs) into car... Objective To investigate whether cardiac tissue extracts from rats could mimic the cardiac microenvironment and act as a natural inducer in promoting the differentiation of bone marrow stromal cells (BMSCs) into cardiomyocytes. Methods Three kinds of tissue extract or cell lysate [infarcted myocardial tissue extract (IMTE), normal myocardial tissue extract (NMTE) and cultured neonatal myocardial lysate (NML)] were employed to induce BMSCs into cardiomyocyte-like cells. The cells were harvested at each time point for reverse transcription-polymerase chain reaction (RT-PCR) detection, immunocytochemical analysis, and transmission electron microscopy. Results After a 7-day induction, BMSCs were enlarged and polygonal in morphology. Myofilaments, striated sarcomeres, Z-lines, and more mitochondia were observed under transmission electron microscope. Elevated expression levels of cardiac-specific genes and proteins were also confirmed by RT-PCR and immunocytochemistry. Moreover, IMTE showed a greater capacity of differentiating BMSCs into cardiomyocyte-like cells. Conclusions Cardiac tissue extracts, especially IMTE, can effectively differentiate BMSCs into cardiomyocyte-like cells. 展开更多
关键词 Bone marrow stromal cells Cell differentiation Cardiac tissue extracts Myocardial infarction
下载PDF
Differentiation of Bone Marrow Mesenchymal Cells to Neural Cells 被引量:2
16
作者 吴永超 郑启新 +3 位作者 郭晓东 谢宗平 王运涛 郝杰 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2005年第5期488-490,493,共4页
Summary: To explore the possibility and condition of differentiation of bone marrow mesenchymal ceils (BMSCs) to neural ceils in vitro, BMSCs from whole bone marrow of rats were cultured. The BMSCs of passage 3 wer... Summary: To explore the possibility and condition of differentiation of bone marrow mesenchymal ceils (BMSCs) to neural ceils in vitro, BMSCs from whole bone marrow of rats were cultured. The BMSCs of passage 3 were identified with immunocytochemical staining of CD44 ( + ), CD71 ( + ) and CD45(-), There were type I and type H ceils in BMSCs. Type I BMSCs were spindlehaped and strong positive in immunocytochemical staining of CD44 and CD71, whereas flat and big type H BMSCs were lightly stained. The BMSCs of same passage were induced to differentiate into neural ceils by β-mercaptoethanol (BME). After induction by BME, the type I BMSCs withdrew to form neuron-like round soma and axon-like and dendrite-like processes, and were stained positively for neurofilament (NF). The type H BMSCs did not change in the BME medium and were negatively or slightly stained of NF. 展开更多
关键词 bone mesenchymal stem cells cell differentiation NEURON
下载PDF
In vitro growth, differentiation and biological characteristics of neural stem cells 被引量:20
17
作者 Meijiang Yun Lianzhong Wang +1 位作者 Yongcai Wang Xiaolian Jiang 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第4期364-367,共4页
OBJECTIVE: To summarize the biological characteristics of neural stem cells, and the separation, purification. differentiation and source of neural stem cells. DATA SOURCES : An online search of Pubmed database was ... OBJECTIVE: To summarize the biological characteristics of neural stem cells, and the separation, purification. differentiation and source of neural stem cells. DATA SOURCES : An online search of Pubmed database was undertaken to identify English articles about the growth of neural stem cells in vitro published from January 2000 to October 2006 by using the keywords of "neural stem cells, bone marrow mesenchymal stem cells (BMSCs), umbilical cord blood stem cells, embryonic stem cells (ESC), separation methods, neural growth factor". And relevant articles published in IEEE/IEE Electronic Library (IEL) database, Springer Link database and Kluwer Online Journals were also searched, Chinese relevant articles published between January 2000 to October 2006 were searched with the same keywords in Chinese in Chinese journal full-text database. STUDY SELECTION : The articles were primarily screened, and then the full-texts were searched. Inclusive criteria: (1) Articles relevant to the biological characteristics and classification of neural stem cells; (2) Articles about the source, separation and differentiation of the ESCs, BMSCs and umbilical cord blood stem cells. The repetitive studies and reviews were excluded. DATA EXTRACTION : Thirty articles were selected from 203 relevant articles according to the inclusive criteria Articles were excluded because of repetition and reviews. DATA SYNTHESES : Neural stem cells have the ability of self-renewing and high differentiation, and they are obtained from ESCs, nerve tissue, nerve system, BMSCs and umbilical cord blood stem cells. ESCs can be separated by means of mechanical dissociation is better than that of the trypsin digestion, BMSCs by density gradient centrifuge separation, hemolysis, whole-blood culture, etc., and umbilical cord blood stem ceils by Ficoil density gradient centrifugation, hydroxyethyl starch (HES) centrifugation sedimentation, etc. Neural growth factor (NGF) and other factors play an important role in the growth of NSCs, such as transforming growth factor (TGF) is an important player in repairing organs, NGF accelerates the process of growth, insulin-like growth factor serves importantly in the differentiation of stem cells into neuron-like cells. CONCLUSION : As unipotent stem cells, NSCs have the abilities of self-renewal and potential of high differentiation. The method of mechanical dissociation is better than trypsin digestion in e separating ESCs. However, density gradient centrifuge separation is better than other methods in the separation of the BMSCs. NGF and other factors play an important role in the growth of NSCs. 展开更多
关键词 NSCS CELL STEM differentiation and biological characteristics of neural stem cells In vitro growth BMSCS
下载PDF
Apoptosis is an obstacle to the differentiation of adipose-derived stromal cells into astrocytes 被引量:1
18
作者 Xiaodong Yuan Qiaoyu Sun +5 位作者 Ya Ou Shujuan Wang Wenli Zhang Hongliang Deng Xiaoying Wu Lili Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第8期837-844,共8页
Previous studies have demonstrated that nerve cells differentiated from adipose-derived stro-mal cells after chemical induction have reduced viability;however, the underlying mechanisms remained unclear. In this study... Previous studies have demonstrated that nerve cells differentiated from adipose-derived stro-mal cells after chemical induction have reduced viability;however, the underlying mechanisms remained unclear. In this study, we induced the differentiation of adult adipose-derived stromal cells into astrocytes using chemical induction. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetra-zolium bromide assay and flow cytometry showed that, with increasing induction time, the apoptotic rate gradually increased, and the number of living cells gradually decreased. Im-munohistochemical staining demonstrated that the number of glial fibrillary acidic protein-, caspase-3- and caspase-9-positive cells gradually increased with increasing induction time. Transmission electron microscopy revealed typical signs of apoptosis after differentiation. Taken together, our results indicate that caspase-dependent apoptosis is an obstacle to the differentia-tion of adipose-derived stromal cells into astrocytes. Inhibiting apoptosis may be an important strategy for increasing the efifciency of induction. 展开更多
关键词 nerve regeneration adult adipose-derived stromal cells cell apoptosis caspase-depen-dent apoptosis cell differentiation ASTROCYTES CASPASE-9 caspase-3 neural regeneration
下载PDF
Neuronal differentiation effects of vascular endothelial factor on bone marrow stromal cells 被引量:1
19
作者 Li Yi Qiaoyun Liu +4 位作者 Jinling Han Jing Ye Fangting Zhang Guanghui Cui Zhuqing Zhou 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第9期657-661,共5页
BACKGROUND:Studies have demonstrated that bone marrow stromal cells (BMSCs) undergo neuronal differentiation under certain in vitro conditions.However,very few inducers of BMSC differentiation have been used in cli... BACKGROUND:Studies have demonstrated that bone marrow stromal cells (BMSCs) undergo neuronal differentiation under certain in vitro conditions.However,very few inducers of BMSC differentiation have been used in clinical application.The effects of vascular endothelial growth factor (VEGF) on in vitro neuronal differentiation of BMSCs remain poorly understood.OBJECTIVE:To investigate the effect of VEGF on neuronal differentiation of BMSCs in vitro,and to determine the best VEGF concentration for experimental induction.DESIGN,TIME AND SETTING:In vitro comparative study was performed at the Central Laboratory and Laboratory of Male Reproductive Medicine,Shenzhen Hospital of Peking University from October 2008 to August 2009.MATERIALS:Recombinant human VEGF165 was purchased from Peprotech Asia,Rehovot,Israel.Neuron-specific enolase (NSE) was purchased from Beijing Biosynthesis Biotechnology,China.METHODS:BMSCs were harvested from adult Sprague Dawley rats.The passaged cells were pre-induced with 10 ng/mL basic fibroblast growth factor for 24 hours,followed by differentiation induction with 0,5,10,and 20 ng/mL VEGF,respectively.MAIN OUTCOME MEASURES:Morphological changes in BMSCs prior to and following VEGF induction.Expression of NSE following induction was determined by immunocytochemistry.RESULTS:Shrunken,round cells,with a strong refraction and thin bipolar or multipolar primary and secondary branches were observed 3 days after induction with 5,10,and 20 ng/mL VEGF.However,these changes were not observed in the control group.At 10 days after induction,the number of NSE-positive cells was greatest in the 10 ng/mL VEGF-treated group (P〈 0.05).The number of NSE-positive cells was least in the control group at 3 and 10 days post-induction (P〈 0.05).Moreover,the number of NSE-positive cells was greater at 10 days compared with at 3 days after induction (P〈 0.05).CONCLUSION:Of the VEGF concentrations tested,10 ng/mL induced the greatest number of neuronal-like cells in vitro from BMSCs. 展开更多
关键词 vascular endothelial growth factor bone marrow stromal cells neuronal-like cells cell differentiation nerve injury neural regeneration
下载PDF
GENE EXPRESSION PROFILING OF PHENYLBUTYRATE INDUCED DIFFERENTIATION OF GLIOMA CELLS BY cDNA ARRAY 被引量:1
20
作者 孙立军 黄强 +3 位作者 兰青 杜子威 胡庚熙 王爱东 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2003年第1期38-42,共5页
Objective: To analyze the changes of gene expression in phenylbutyrate induced differentiation of glioma cells. Methods: The expression levels of 14000 genes in glioma cells before and after inducement with sodium phe... Objective: To analyze the changes of gene expression in phenylbutyrate induced differentiation of glioma cells. Methods: The expression levels of 14000 genes in glioma cells before and after inducement with sodium phenyl- butyrate for 2 h or 6 days were evaluated by cDNA array technique and proved by multi-dot blotting. Results: expression of 98 genes in glioma cells showed changes after the inducement. Some genes involved in transcription and translation and some oncogenes are down-regulated, while some gene involved in differentiation or apoptosis are up-regulated. 18 unknown expression sequencing tag (EST) changed too. Conclusion: A gene expression profile associated with differentiation of glioma cells was established. 展开更多
关键词 PHENYLBUTYRATE GLIOMA Cell differentiation Gene expression cDNA array
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部