期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Gadd45a deletion aggravates hematopoietic stem cell dysfunction in ATM-deficient mice 被引量:5
1
作者 Yulin Chen Runan Yang Peng Guo Zhenyu Ju 《Protein & Cell》 SCIE CAS CSCD 2014年第1期80-89,共10页
Ataxia telangiectasia mutated (ATM) kinase plays an essential role in the maintenance of genomic stability. ATM-deficient (ATM-/-) mice exhibit hematopoietic stem cell (HSC) dysfunction and a high incidence of l... Ataxia telangiectasia mutated (ATM) kinase plays an essential role in the maintenance of genomic stability. ATM-deficient (ATM-/-) mice exhibit hematopoietic stem cell (HSC) dysfunction and a high incidence of lym- phoma. Gadd45a controls cell cycle arrest, apoptosis and DNA repair, and is involved in the ATM-p53 mediated DNA damage response. However, the role of Gadd45a in regulating the functionality of ATM-/- HSCs is unknown. Here we report that Gadd45a deletion did not rescue the defects of T-cells and B-cells development in ATM-/- mice. Instead, ATM and Gadd45a double knockout (ATM-/- Gadd45a-/-) HSCs exhibited an aggravated defect in long-term self-renewal capacity compared to ATM-/- HSCs in HSC transplantation experiments. Fur- ther experiments revealed that the aggravated defect of ATM-/- Gadd45a-/- HSCs was due to a reduction of cell proliferation, associated with an accumulation of DNA damage and subsequent activation of DNA damage response including an up-regulation of p53-p21 signal- ing pathway. Additionally, ATM-/- Gadd45a-/- mice showed an increased incidence of hematopoietic malignancies, as well as an increased rate of metastasis than ATM-/- mice. In conclusion, Gadd45a deletion aggravated the DNA damage accumulation, which sub- sequently resulted in a further impaired self-renewal capacity and an increased malignant transformation in ATM-/- HSCs. 展开更多
关键词 GADD45A ATM hematopoietic stem cellsdna damage
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部