The evolution of microstructure during hot deformation is key to achieving good mechanical properties in aluminum alloys.We have developed a cellular automaton(CA) based model to simulate the microstructural evolution...The evolution of microstructure during hot deformation is key to achieving good mechanical properties in aluminum alloys.We have developed a cellular automaton(CA) based model to simulate the microstructural evolution in 7075 aluminum alloy during hot deformation.Isothermal compression tests were conducted to obtain material parameters for 7075 aluminum alloy,leading to the establishment of models for dislocation density,nucleation of recrystallized grains,and grain growth.Integrating these aspects with grain topological deformation,our CA model effectively predicts flow stress,dynamic recrystallization(DRX) volume fraction,and average grain size under diverse deformation conditions.A systematic comparison was made between electron back scattered diffraction(EBSD) maps and CA model simulated under different deformation temperatures(573 to 723 K),strain rates(0.001 to 1 s^(-1)),and strain amounts(30% to 70%).These analyses indicate that large strain,high temperature,and low strain rate facilitate dynamic recrystallization and grain refinement.The results from the CA model show good accuracy and predictive capability,with experimental error within 10%.展开更多
Microporosity formed in the solidification process of Al alloys is detrimental to the alloy properties.A two-dimensional cellular automaton(CA)model was developed to simulate the microstructure and microporosity forma...Microporosity formed in the solidification process of Al alloys is detrimental to the alloy properties.A two-dimensional cellular automaton(CA)model was developed to simulate the microstructure and microporosity formation in Al-Cu alloys,considering variations in Cu content and solidification rate.The results indicate that the Cu content primarily influences the growth of microporosity.To validate the model,directional solidification experiments were conducted on Al-Cu alloys with varing Cu contents and withdrawal rates.The experimental results of dendrites and microporosity characteristics agree well with the predictions from the developed model,thus confirming the validity of the model.The alloy’s liquidus temperature,dendrite morphology,and hydrogen saturation solubility arising from different Cu contents have significant effects on microporosity morphology.The withdrawal rate primarily affects the nucleation of hydrogen microporosity by altering cooling rates and dendritic growth rates,resulting in different microporosity characteristics.展开更多
Al-1.0%Sc-1.0%Zr (mass fraction) master alloy was prepared at different cooling rates. The morphology and thermodynamics data of the primary particles of the master alloy were investigated by X-ray diffraction (XRD...Al-1.0%Sc-1.0%Zr (mass fraction) master alloy was prepared at different cooling rates. The morphology and thermodynamics data of the primary particles of the master alloy were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). It shows that the primary particles are dendrite-shaped particles comprised of several attached small cubic, cusped-cubic or crucifer shape particles at slow cooling rate. However, the primary particles are separated with crucifer shape at intermediate cooling rate, and they are cubic with cusped-cubic shape at high cooling rate. Meanwhile, the separated and attached particles present AlaSc/AlaZr1-xScx core-shell structure. The formation mechanism of the structure was systematically investigated by a mathematical model.展开更多
Two-dimensional cellular automaton(CA)simulations of phase transformations of binary alloys during solidification were reported.The modelling incorporates local concentration and heat changes into a nucleation or grow...Two-dimensional cellular automaton(CA)simulations of phase transformations of binary alloys during solidification were reported.The modelling incorporates local concentration and heat changes into a nucleation or growth function,which is utilized by the automaton in a probabilistic fashion.These simulations may provide an efficient method of discovering how the physical processes involved in solidification processes dynamically progress and how they interact with each other during solidification.The simulated results show that the final morphology during solidification is related with the cooling conditions.The established model can be used to evaluate the phase transformation of binary alloys during solidification.展开更多
In order to simulate the microstructure evolution during hot compressive deformation,models of dynamic recrystallization(DRX)by cellular automaton(CA)method for7055aluminum alloy were established.The hot compression t...In order to simulate the microstructure evolution during hot compressive deformation,models of dynamic recrystallization(DRX)by cellular automaton(CA)method for7055aluminum alloy were established.The hot compression tests were conducted toobtain material constants,and models of dislocation density,nucleation rate and recrystallized grain growth were fitted by leastsquare method.The effects of strain,strain rate,deformation temperature and initial grain size on microstructure variation werestudied.The results show that the DRX plays a vital role in grain refinement in hot deformation.Large strain,high temperature andsmall strain rate are beneficial to grain refinement.The stable size of recrystallized grain is not concerned with initial grain size,butdepends on strain rate and temperature.Kinetic characteristic of DRX process was analyzed.By comparison of simulated andexperimental flow stress–strain curves and metallographs,it is found that the established CA models can accurately predict themicrostructure evolution of7055aluminum alloy during hot compressive deformation.展开更多
Replication processing using NaCl spaceholders offers the possibility to produce cellular structures for a range of Mg alloys. Four Mg alloys (AZ63, M2, ZM21 and MZX211) were processed into open cellular structures wi...Replication processing using NaCl spaceholders offers the possibility to produce cellular structures for a range of Mg alloys. Four Mg alloys (AZ63, M2, ZM21 and MZX211) were processed into open cellular structures with a pore size near 500 μm and a porosity of 75% using an optimized NaCl leaching procedure. The production method was found to be robust and yielded samples of acceptable strength and stiffness. Their dissolution rate (by H2 release in simulated body fluid) and mechanical properties (by cyclic compression) were measured. For all 4 alloys the initial mechanical properties mimic those of cancellous bone;however, the dissolution rate is too high for direct use in the human body, leading to excessive hydrogen evolution and overly rapid degradation of mechanical properties. Further post-processing of the material is thus required.展开更多
The purpose of this study is to predict the morphologies in the solidification process for Cu-0.6Cr(mass fraction,%)alloy by vacuum continuous casting(VCC)and verify its accuracy by the observed experimental results.I...The purpose of this study is to predict the morphologies in the solidification process for Cu-0.6Cr(mass fraction,%)alloy by vacuum continuous casting(VCC)and verify its accuracy by the observed experimental results.In numerical simulation aspect, finite difference(FD)method and modified cellular automaton(MCA)model were used to simulate the macro-temperature field, micro-concentration field,nucleation and grain growth of Cu-0.6Cr alloy using real data from actual casting operations.From the observed casting experiment,the preliminary grain morphologies are the directional columnar grains by the VCC process.The solidification morphologies by MCAFD model are in agreement with the result of actual casting experiment well.展开更多
The dynamic recrystallization(DRX) process of hot compressed aluminium alloy 7050 was predicted using cellular automaton(CA) combined with topology deformation. The hot deformatation characteristics of aluminium alloy...The dynamic recrystallization(DRX) process of hot compressed aluminium alloy 7050 was predicted using cellular automaton(CA) combined with topology deformation. The hot deformatation characteristics of aluminium alloy 7050 were investigated by hot uniaxial compression tests in order to obtain the material parameters used in the CA model. The influences of process parameters(strain, strain rate and temperature) on the fraction of DRX and the average recrystallization grain(R-grain) size were investigated and discussed. It is found that larger stain, higher temperature and lower strain rate(less than 0.1 s^(–1)) are beneficial to the increasing fraction of DRX. And the deformation temperature affects the mean R-grain size much more greatly than other parameters. It is also noted that there is a critical strain for the occurrence of DRX which is related to strain rate and temperature. In addition, it is shown that the CA model with topology deformation is able to simulate the microstructural evolution and the flow behavior of aluminium alloy 7050 material under various deformation conditions.展开更多
The prediction of microstructure evolution plays an important role in the design of forging process. In the present work, the cellular automaton (CA) program was developed to simulate the process of dynamic recrystall...The prediction of microstructure evolution plays an important role in the design of forging process. In the present work, the cellular automaton (CA) program was developed to simulate the process of dynamic recrystallization (DRX) for aluminium alloy 7050. The material constants in CA models, including dislocation density, nucleation rate and grain growth, were determined by the isothermal compress tests on Gleeble 1500 machine. The model of dislocation density was obtained by linear regression method based on the experimental results. The influences of the deformation parameters on the percentage of DRX and the mean grain size for aluminium alloy 7050 were investigated in details by means of CA simulation. The simulation results show that, as temperature increases from 350 to 450 ℃ at a strain rate of 0.01 s?1, the percentage of DRX also increases greatly and the mean grain size decreases from 50 to 39.3 μm. The mean size of the recrystallied grains (R-grains) mainly depends on the Zener-Hollomon parameter. To obtain fine grain, the desired deformation temperature is determined from 400 to 450 ℃.展开更多
The deformation behavior of V-10Cr-5Ti alloy was studied on the Gleeble-1500 thermomechanical simulator at the temperatures of 950-1350℃, and the strain rates of 0.01-10 s^-1. Based on the Arrhenius model, dislocatio...The deformation behavior of V-10Cr-5Ti alloy was studied on the Gleeble-1500 thermomechanical simulator at the temperatures of 950-1350℃, and the strain rates of 0.01-10 s^-1. Based on the Arrhenius model, dislocation density model, nucleation model and grain growth model, a numerical cellular automaton (CA) model coupling simulation of hot deformation is established to simulate and characterize the microstructural evolution during DRX. The results show that the flow stress is fairly sensitive to the strain rate and deformation temperature. The error between the predicted stress by the Arrhenius model and the actual measured value is less than 8%. The initial average grain size calculated by the CA model is 86.25 μm, which is close to the experimental result (85.63 μm). The simulations show that the effect of initial grain size on the dynamic recrystallization microstructure evolution is not significant, while increasing the strain rate or reducing the temperature can refine the recrystallized grains.展开更多
Al-Si-Mg alloys are the most commonly used material in high vacuum die-casting(HVDC),in which the morphology and distribution ofα-Al grains have important effect on mechanical properties.A multi-component quantitativ...Al-Si-Mg alloys are the most commonly used material in high vacuum die-casting(HVDC),in which the morphology and distribution ofα-Al grains have important effect on mechanical properties.A multi-component quantitative cellular automaton(CA)model was developed to simulate the microstructure and microsegregation of HVDC Al-Si-Mg alloys with different Si contents(7%and 10%)and cooling rates during solidification.The grain number and average grain size with electron backscatter diffraction(EBSD)analysis were used to verify the simulation.The relationship between grain size and nucleation order as well as nuclei density was investigated and discussed.It is found that the growth of grains will be restrained in the location with higher nuclei density.The influence of composition and cooling rate on the solute transport reveals that for AlSi7Mg0.3 alloy the concentration of solute Mg in liquid is higher at the beginning of eutectic solidification.The comparison between simulation and experiment results shows that externally solidified crystals(ESCs)have a significant effect for samples with high cooling rate and narrow solidification interval.展开更多
In order to present the microstructures of dynamic recrystallization(DRX) in different deformation zones of hot extruded NiTi shape memory alloy(SMA) pipe coupling,a simulation approach combining finite element method...In order to present the microstructures of dynamic recrystallization(DRX) in different deformation zones of hot extruded NiTi shape memory alloy(SMA) pipe coupling,a simulation approach combining finite element method(FEM) with cellular automaton(CA) was developed and the relationship between the macroscopic field variables and the microscopic internal variables was established.The results show that there exists a great distinction among the microstructures in different zones of pipe coupling because deformation histories of these regions are diverse.Large plastic deformation may result in fine recrystallized grains,whereas the recrystallized grains may grow very substantially if there is a rigid translation during the deformation,even if the final plastic strain is very large.As a consequence,the deformation history has a significant influence on the evolution path of the DRX as well as the final microstructures of the DRX,including the morphology,the mean grain size and the recrystallization fraction.展开更多
Al 4.95%Zn alloy is directionally solidified in a modified Bridgman apparatus with higher temperature gradient to investigate response of cellular/dendritic microstructures and primary spacing to the variation of grow...Al 4.95%Zn alloy is directionally solidified in a modified Bridgman apparatus with higher temperature gradient to investigate response of cellular/dendritic microstructures and primary spacing to the variation of growth velocity under near rapid directional solidification condition. The results show that, with increasing growth rate, there exists a transition from dendrite to fine cell and a wide distribution range in primary cellular/dendritic spacing at the given temperature gradient. The maximum, λ max , minimum, λ min , and average primary spacing, λ , as functions of growth velocity, v , can be given by λ max =12 340 v -0.835 3 , λ min =2 953.7 v -0.771 7 , λ =7 820.3 v -0.833 3 , respectively. , as functions of growth velocity, v , can be given by λ max =12 340 v -0.835 3 , λ min =2 953.7 v -0.771 7 , λ =7 820.3 v -0.833 3 , respectively.展开更多
Horizontal directional solidification experiments were carried out with a monophasic Sn-2%Sb(mass fraction) alloy to analyze the influence of solidification thermal parameters on the morphology and length scale of t...Horizontal directional solidification experiments were carried out with a monophasic Sn-2%Sb(mass fraction) alloy to analyze the influence of solidification thermal parameters on the morphology and length scale of the microstructure. Continuous temperature measurements were made during solidification at different positions along the length of the casting and these temperature data were used to determine solidification thermal parameters, including the growth rate(VL) and the cooling rate(TR). High cooling rate cells and dendrites are shown to characterize the microstructure in different regions of the casting, with a reverse dendrite-to-cell transition occurring for TR5.0 K/s. Cellular(λc) and primary dendrite arm spacings(λ1) are determined along the length of the directionally-solidified casting. Experimental growth laws relating λc and λ1 to VL and TR are proposed, and a comparative analysis with results from a vertical upward directional solidification experiment is carried out. The influence of morphology and length scale of the microstructure on microhardness is also analyzed.展开更多
The microstructural evolution of Ti-45 at.%Al alloy during directional solidification was simulated by applying a solute diffusion controlled solidification model.The obtained results have shown that under high therma...The microstructural evolution of Ti-45 at.%Al alloy during directional solidification was simulated by applying a solute diffusion controlled solidification model.The obtained results have shown that under high thermal gradients the stable primary spacing can be adjusted via branching or competitive growth.For dendritic structures formed under a high thermal gradient,the secondary dendrite arms are developed not very well in many cases due to the branching mechanism under a constrained dendritic growth condition.Furthermore,it has been observed that,with increasing pulling velocity,there exists a cell/dendrite transition region consisting of cells and dendrites,which varies with the thermal gradient in a contradicting way,i.e.increase of the thermal gradient leading to the decrease of the range of the transition region.The simulations agree reasonably well with experiment results.展开更多
In order to investigate the response of cellular spacing to the variation of growth velocity under near-rapid directional solidification condition, Al-0.53wt%Zn alloy is directionally solidified with Bridgman apparatu...In order to investigate the response of cellular spacing to the variation of growth velocity under near-rapid directional solidification condition, Al-0.53wt%Zn alloy is directionally solidified with Bridgman apparatus. The results show that at the given temperature gradient the obtained microstrvctures are all cells and there exists a wide distribution range of cellular spacing. The maximum, λmax, minimum, λmin, and average cellular spacing, λ, as functions of growth rate, V, can be given by λmax=948.51V-0.4961, λmin= 661.16V-0.5015 and λ=412.41V-0.5049, respectively. The experimental results are compared with that predicted by KGT model, and a good agreement is found. Moreover,it is found that the average cellular spacing is also remarkably history-dependent.展开更多
The detailed laser surface remelting experiments of Cu-31.4 wt pct Mn and Cu-26.6 wt pct Mn alloys on a 5 kW CO2 laser were carried out to study the effects of processing parameters (scanning velocity, output power of...The detailed laser surface remelting experiments of Cu-31.4 wt pct Mn and Cu-26.6 wt pct Mn alloys on a 5 kW CO2 laser were carried out to study the effects of processing parameters (scanning velocity, output power of laser) on the growth direction of microstructure in the molten pool and cellular spacing selection under the condition of ultra-high temperature gradient and rapid directional solidification. The experimental results show that the growth direction of microstructure is strongly affected by laser processing parameters. The ultra-high temperature gradient directional solidification can be realized on the surface of samples during laser surface remelting by controlling laser processing parameters, the temperature gradient and growth velocity can reach 106 K/m and 24.1 mm/s, respectively, and the solidification microstructure in the center of the molten pool grows along the laser beam scanning direction. There exists a distribution range of cellular spacings under the laser rapid solidification conditions, and the average spacing decreases with increasing of growth rate. The maximum, λmax, minimum, λmin, and average primary spacing, A, as functions of growth rate, Vb, can be given by,λmax=12.54Vb-0.61, λmin=4.47 Vb-0.52, λ=9.09Vb-0.62, respectively. The experimental results are compared with the current Hunt-Lu model for rapid cellular/dendritic growth, and a good agreement is found.展开更多
A cellular automaton model for simulating grain structure formation during solidification processes of Ti-45%Al(mole fraction) alloy ingot was developed, based on finite differential method for macroscopic modeling of...A cellular automaton model for simulating grain structure formation during solidification processes of Ti-45%Al(mole fraction) alloy ingot was developed, based on finite differential method for macroscopic modeling of heat transfer and a cellular automaton technique for microscopic modeling of nucleation, growth, solute redistribution and solute diffusion. The relation between the growth velocity of a dendrite tip and the local undercooling, which consists of constitutional, thermal, curvature and attachment kinetics undercooling is calculated according to the Kurz-Giovanola-Trivedi model. The effect of solidification contraction is taken into consideration. The influence of process variables upon the resultant grain structures was investigated. Special moving allocation technique was designed to minimize the computation time and memory size associated with a large number of cells. The predicted grain structures are in good agreement with the experimental results.展开更多
The influence of laser process parameters on the densification,phase composition,microstructure,and mechanical properties of Ta−33wt.%Ti alloy prepared via laser powder bed fusion(LPBF)was investigated.The results sho...The influence of laser process parameters on the densification,phase composition,microstructure,and mechanical properties of Ta−33wt.%Ti alloy prepared via laser powder bed fusion(LPBF)was investigated.The results show that fully dense and homogeneous Ta−Ti parts can be obtained from LPBF with appropriate energy input.The cellular and dendritic structures were formed due to constitutional undercooling.Transmission electron microscopy(TEM)analysis showed that the lamellarα″phase within the cellular structures preferred to concentrate at the cellular boundaries owing to the elemental micro-segregation in the solidification front.The samples fabricated under the energy density of 166.7 J/mm^(3) had a favorable ultimate tensile strength of 806 MPa and an excellent Young’s modulus of 36.7 GPa.展开更多
Hot flow forming(HFF)is a promising forming technology to manufacture thin-walled cylindrical part with longitudinal inner ribs(CPLIRs)made of magnesium(Mg)alloys,which has wide applications in the aerospace field.How...Hot flow forming(HFF)is a promising forming technology to manufacture thin-walled cylindrical part with longitudinal inner ribs(CPLIRs)made of magnesium(Mg)alloys,which has wide applications in the aerospace field.However,due to the thermo-mechanical coupling effect and the existence of stiffened structure,complex microstructure evolution and uneven microstructure occur easily at the cylindrical wall(CW)and inner rib(IR)of Mg alloy thin-walled CPLIRs during the HFF.In this paper,a modified cellular automaton(CA)model of Mg alloy considering the effects of deformation conditions on material parameters was developed using the artificial neural network(ANN)method.It is found that the ANN-modified CA model exhibits better predictability for the microstructure of hot deformation than the conventional CA model.Furthermore,the microstructure evolution of ZK61 alloy CPLIRs during the HFF was analyzed by coupling the modified CA model and finite element analysis(FEA).The results show that compared with the microstructure at the same layer of the IR,more refined grains and less sufficient DRX resulted from larger strain and strain rate occur at that of the CW;various differences of strain and strain rate in the wall-thickness exist between the CW and IR,which leads to the inhomogeneity of microstructure rising firstly and declining from the inside layer to outside layer;the obtained Hall-Petch relationship between the measured microhardness and predicted grain sizes at the CW and the IR indicates the reliability of the coupled FEA-CA simulation results.展开更多
基金Funded by the Central Government Guides Local Funds for Science and Technology Development(No.YDZJSX20231A045)the Fundamental Research Program of Shanxi Province(Nos.202103021223288 and 202103021224282)。
文摘The evolution of microstructure during hot deformation is key to achieving good mechanical properties in aluminum alloys.We have developed a cellular automaton(CA) based model to simulate the microstructural evolution in 7075 aluminum alloy during hot deformation.Isothermal compression tests were conducted to obtain material parameters for 7075 aluminum alloy,leading to the establishment of models for dislocation density,nucleation of recrystallized grains,and grain growth.Integrating these aspects with grain topological deformation,our CA model effectively predicts flow stress,dynamic recrystallization(DRX) volume fraction,and average grain size under diverse deformation conditions.A systematic comparison was made between electron back scattered diffraction(EBSD) maps and CA model simulated under different deformation temperatures(573 to 723 K),strain rates(0.001 to 1 s^(-1)),and strain amounts(30% to 70%).These analyses indicate that large strain,high temperature,and low strain rate facilitate dynamic recrystallization and grain refinement.The results from the CA model show good accuracy and predictive capability,with experimental error within 10%.
基金financially supported by the National Natural Science Foundation of China(Grant No.51875211)the Beijing Natural Science Foundation(Grant No.L223001)。
文摘Microporosity formed in the solidification process of Al alloys is detrimental to the alloy properties.A two-dimensional cellular automaton(CA)model was developed to simulate the microstructure and microporosity formation in Al-Cu alloys,considering variations in Cu content and solidification rate.The results indicate that the Cu content primarily influences the growth of microporosity.To validate the model,directional solidification experiments were conducted on Al-Cu alloys with varing Cu contents and withdrawal rates.The experimental results of dendrites and microporosity characteristics agree well with the predictions from the developed model,thus confirming the validity of the model.The alloy’s liquidus temperature,dendrite morphology,and hydrogen saturation solubility arising from different Cu contents have significant effects on microporosity morphology.The withdrawal rate primarily affects the nucleation of hydrogen microporosity by altering cooling rates and dendritic growth rates,resulting in different microporosity characteristics.
基金Project(2012CB619503)supported by the National Basic Research Program of ChinaProject(2013AA031001)supported by the National High-tech Research and Development Program of ChinaProject(2012DFA50630)supported by the International Science and Technology Cooperation Program of China
文摘Al-1.0%Sc-1.0%Zr (mass fraction) master alloy was prepared at different cooling rates. The morphology and thermodynamics data of the primary particles of the master alloy were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). It shows that the primary particles are dendrite-shaped particles comprised of several attached small cubic, cusped-cubic or crucifer shape particles at slow cooling rate. However, the primary particles are separated with crucifer shape at intermediate cooling rate, and they are cubic with cusped-cubic shape at high cooling rate. Meanwhile, the separated and attached particles present AlaSc/AlaZr1-xScx core-shell structure. The formation mechanism of the structure was systematically investigated by a mathematical model.
基金Project(50572013) supported by the National Natural Science Foundation of ChinaProject(G2000067104) supported by the National Basic Research Program of China
文摘Two-dimensional cellular automaton(CA)simulations of phase transformations of binary alloys during solidification were reported.The modelling incorporates local concentration and heat changes into a nucleation or growth function,which is utilized by the automaton in a probabilistic fashion.These simulations may provide an efficient method of discovering how the physical processes involved in solidification processes dynamically progress and how they interact with each other during solidification.The simulated results show that the final morphology during solidification is related with the cooling conditions.The established model can be used to evaluate the phase transformation of binary alloys during solidification.
基金Projects(51175257,51405520) supported by the National Natural Science Foundation of China
文摘In order to simulate the microstructure evolution during hot compressive deformation,models of dynamic recrystallization(DRX)by cellular automaton(CA)method for7055aluminum alloy were established.The hot compression tests were conducted toobtain material constants,and models of dislocation density,nucleation rate and recrystallized grain growth were fitted by leastsquare method.The effects of strain,strain rate,deformation temperature and initial grain size on microstructure variation werestudied.The results show that the DRX plays a vital role in grain refinement in hot deformation.Large strain,high temperature andsmall strain rate are beneficial to grain refinement.The stable size of recrystallized grain is not concerned with initial grain size,butdepends on strain rate and temperature.Kinetic characteristic of DRX process was analyzed.By comparison of simulated andexperimental flow stress–strain curves and metallographs,it is found that the established CA models can accurately predict themicrostructure evolution of7055aluminum alloy during hot compressive deformation.
基金This work has been funded by core funding of the Department of Metallurgy and Materials Engineering at KU Leuven and the Laboratory of Mechanical Metallurgy at EPFL.
文摘Replication processing using NaCl spaceholders offers the possibility to produce cellular structures for a range of Mg alloys. Four Mg alloys (AZ63, M2, ZM21 and MZX211) were processed into open cellular structures with a pore size near 500 μm and a porosity of 75% using an optimized NaCl leaching procedure. The production method was found to be robust and yielded samples of acceptable strength and stiffness. Their dissolution rate (by H2 release in simulated body fluid) and mechanical properties (by cyclic compression) were measured. For all 4 alloys the initial mechanical properties mimic those of cancellous bone;however, the dissolution rate is too high for direct use in the human body, leading to excessive hydrogen evolution and overly rapid degradation of mechanical properties. Further post-processing of the material is thus required.
文摘The purpose of this study is to predict the morphologies in the solidification process for Cu-0.6Cr(mass fraction,%)alloy by vacuum continuous casting(VCC)and verify its accuracy by the observed experimental results.In numerical simulation aspect, finite difference(FD)method and modified cellular automaton(MCA)model were used to simulate the macro-temperature field, micro-concentration field,nucleation and grain growth of Cu-0.6Cr alloy using real data from actual casting operations.From the observed casting experiment,the preliminary grain morphologies are the directional columnar grains by the VCC process.The solidification morphologies by MCAFD model are in agreement with the result of actual casting experiment well.
基金Project(2012ZX04010-8)supported by National Key Technology R&D Program of China
文摘The dynamic recrystallization(DRX) process of hot compressed aluminium alloy 7050 was predicted using cellular automaton(CA) combined with topology deformation. The hot deformatation characteristics of aluminium alloy 7050 were investigated by hot uniaxial compression tests in order to obtain the material parameters used in the CA model. The influences of process parameters(strain, strain rate and temperature) on the fraction of DRX and the average recrystallization grain(R-grain) size were investigated and discussed. It is found that larger stain, higher temperature and lower strain rate(less than 0.1 s^(–1)) are beneficial to the increasing fraction of DRX. And the deformation temperature affects the mean R-grain size much more greatly than other parameters. It is also noted that there is a critical strain for the occurrence of DRX which is related to strain rate and temperature. In addition, it is shown that the CA model with topology deformation is able to simulate the microstructural evolution and the flow behavior of aluminium alloy 7050 material under various deformation conditions.
基金Project(2005CB724105) supported by the Major State Basic Research Program of ChinaProject(IRT0549) supported by Program for Changjiang Scholars and Innovative Research Team in University
文摘The prediction of microstructure evolution plays an important role in the design of forging process. In the present work, the cellular automaton (CA) program was developed to simulate the process of dynamic recrystallization (DRX) for aluminium alloy 7050. The material constants in CA models, including dislocation density, nucleation rate and grain growth, were determined by the isothermal compress tests on Gleeble 1500 machine. The model of dislocation density was obtained by linear regression method based on the experimental results. The influences of the deformation parameters on the percentage of DRX and the mean grain size for aluminium alloy 7050 were investigated in details by means of CA simulation. The simulation results show that, as temperature increases from 350 to 450 ℃ at a strain rate of 0.01 s?1, the percentage of DRX also increases greatly and the mean grain size decreases from 50 to 39.3 μm. The mean size of the recrystallied grains (R-grains) mainly depends on the Zener-Hollomon parameter. To obtain fine grain, the desired deformation temperature is determined from 400 to 450 ℃.
基金Project(51405110)supported by the National Natural Science Foundation of ChinaProject(20132302120002)supported by the Specialized Research Fund for the Doctoral Program of Higher Education,ChinaProject(LBH-Z14096)supported by Heilongjiang Province Postdoctoral Fund,China
文摘The deformation behavior of V-10Cr-5Ti alloy was studied on the Gleeble-1500 thermomechanical simulator at the temperatures of 950-1350℃, and the strain rates of 0.01-10 s^-1. Based on the Arrhenius model, dislocation density model, nucleation model and grain growth model, a numerical cellular automaton (CA) model coupling simulation of hot deformation is established to simulate and characterize the microstructural evolution during DRX. The results show that the flow stress is fairly sensitive to the strain rate and deformation temperature. The error between the predicted stress by the Arrhenius model and the actual measured value is less than 8%. The initial average grain size calculated by the CA model is 86.25 μm, which is close to the experimental result (85.63 μm). The simulations show that the effect of initial grain size on the dynamic recrystallization microstructure evolution is not significant, while increasing the strain rate or reducing the temperature can refine the recrystallized grains.
基金funded by the National Natural Science Foundation of China(No.51875211)the Key Area Research and Development Program of Guangdong Province(No.2020B010186002)the Key Technology Program of Foshan(1920001001040),China.
文摘Al-Si-Mg alloys are the most commonly used material in high vacuum die-casting(HVDC),in which the morphology and distribution ofα-Al grains have important effect on mechanical properties.A multi-component quantitative cellular automaton(CA)model was developed to simulate the microstructure and microsegregation of HVDC Al-Si-Mg alloys with different Si contents(7%and 10%)and cooling rates during solidification.The grain number and average grain size with electron backscatter diffraction(EBSD)analysis were used to verify the simulation.The relationship between grain size and nucleation order as well as nuclei density was investigated and discussed.It is found that the growth of grains will be restrained in the location with higher nuclei density.The influence of composition and cooling rate on the solute transport reveals that for AlSi7Mg0.3 alloy the concentration of solute Mg in liquid is higher at the beginning of eutectic solidification.The comparison between simulation and experiment results shows that externally solidified crystals(ESCs)have a significant effect for samples with high cooling rate and narrow solidification interval.
基金Projects(51305091,51475101)supported by the National Natural Science Foundation of ChinaProject(20132304120025)supported by Specialized Research Fund for the Doctoral Program of Higher Education,China
文摘In order to present the microstructures of dynamic recrystallization(DRX) in different deformation zones of hot extruded NiTi shape memory alloy(SMA) pipe coupling,a simulation approach combining finite element method(FEM) with cellular automaton(CA) was developed and the relationship between the macroscopic field variables and the microscopic internal variables was established.The results show that there exists a great distinction among the microstructures in different zones of pipe coupling because deformation histories of these regions are diverse.Large plastic deformation may result in fine recrystallized grains,whereas the recrystallized grains may grow very substantially if there is a rigid translation during the deformation,even if the final plastic strain is very large.As a consequence,the deformation history has a significant influence on the evolution path of the DRX as well as the final microstructures of the DRX,including the morphology,the mean grain size and the recrystallization fraction.
文摘Al 4.95%Zn alloy is directionally solidified in a modified Bridgman apparatus with higher temperature gradient to investigate response of cellular/dendritic microstructures and primary spacing to the variation of growth velocity under near rapid directional solidification condition. The results show that, with increasing growth rate, there exists a transition from dendrite to fine cell and a wide distribution range in primary cellular/dendritic spacing at the given temperature gradient. The maximum, λ max , minimum, λ min , and average primary spacing, λ , as functions of growth velocity, v , can be given by λ max =12 340 v -0.835 3 , λ min =2 953.7 v -0.771 7 , λ =7 820.3 v -0.833 3 , respectively. , as functions of growth velocity, v , can be given by λ max =12 340 v -0.835 3 , λ min =2 953.7 v -0.771 7 , λ =7 820.3 v -0.833 3 , respectively.
基金the financial support provided by IFPA, Federal Institute of Education, Science and Technology of Para, FAPESP-Sao Paulo Research Foundation,Brazil (grants 2016/18186-1 and 2017/15158-0)CNPq,The Brazilian Research Council (grants 301600/2015-5 472745/2013-1 and 308784/2014-6)
文摘Horizontal directional solidification experiments were carried out with a monophasic Sn-2%Sb(mass fraction) alloy to analyze the influence of solidification thermal parameters on the morphology and length scale of the microstructure. Continuous temperature measurements were made during solidification at different positions along the length of the casting and these temperature data were used to determine solidification thermal parameters, including the growth rate(VL) and the cooling rate(TR). High cooling rate cells and dendrites are shown to characterize the microstructure in different regions of the casting, with a reverse dendrite-to-cell transition occurring for TR5.0 K/s. Cellular(λc) and primary dendrite arm spacings(λ1) are determined along the length of the directionally-solidified casting. Experimental growth laws relating λc and λ1 to VL and TR are proposed, and a comparative analysis with results from a vertical upward directional solidification experiment is carried out. The influence of morphology and length scale of the microstructure on microhardness is also analyzed.
文摘The microstructural evolution of Ti-45 at.%Al alloy during directional solidification was simulated by applying a solute diffusion controlled solidification model.The obtained results have shown that under high thermal gradients the stable primary spacing can be adjusted via branching or competitive growth.For dendritic structures formed under a high thermal gradient,the secondary dendrite arms are developed not very well in many cases due to the branching mechanism under a constrained dendritic growth condition.Furthermore,it has been observed that,with increasing pulling velocity,there exists a cell/dendrite transition region consisting of cells and dendrites,which varies with the thermal gradient in a contradicting way,i.e.increase of the thermal gradient leading to the decrease of the range of the transition region.The simulations agree reasonably well with experiment results.
文摘In order to investigate the response of cellular spacing to the variation of growth velocity under near-rapid directional solidification condition, Al-0.53wt%Zn alloy is directionally solidified with Bridgman apparatus. The results show that at the given temperature gradient the obtained microstrvctures are all cells and there exists a wide distribution range of cellular spacing. The maximum, λmax, minimum, λmin, and average cellular spacing, λ, as functions of growth rate, V, can be given by λmax=948.51V-0.4961, λmin= 661.16V-0.5015 and λ=412.41V-0.5049, respectively. The experimental results are compared with that predicted by KGT model, and a good agreement is found. Moreover,it is found that the average cellular spacing is also remarkably history-dependent.
基金The financial aid of the National Natural Science Foundation of China under grant No.59771054Postdoctoral Science Foundation of China+1 种基金Postdoctoral Science Foundation of Tsinghua-Zhongda985 Science Foundation of Tsinghua University are gratefully acknowledged.
文摘The detailed laser surface remelting experiments of Cu-31.4 wt pct Mn and Cu-26.6 wt pct Mn alloys on a 5 kW CO2 laser were carried out to study the effects of processing parameters (scanning velocity, output power of laser) on the growth direction of microstructure in the molten pool and cellular spacing selection under the condition of ultra-high temperature gradient and rapid directional solidification. The experimental results show that the growth direction of microstructure is strongly affected by laser processing parameters. The ultra-high temperature gradient directional solidification can be realized on the surface of samples during laser surface remelting by controlling laser processing parameters, the temperature gradient and growth velocity can reach 106 K/m and 24.1 mm/s, respectively, and the solidification microstructure in the center of the molten pool grows along the laser beam scanning direction. There exists a distribution range of cellular spacings under the laser rapid solidification conditions, and the average spacing decreases with increasing of growth rate. The maximum, λmax, minimum, λmin, and average primary spacing, A, as functions of growth rate, Vb, can be given by,λmax=12.54Vb-0.61, λmin=4.47 Vb-0.52, λ=9.09Vb-0.62, respectively. The experimental results are compared with the current Hunt-Lu model for rapid cellular/dendritic growth, and a good agreement is found.
基金Project(50395102) supported by the National Natural Science Foundation of China Project (JC 02 10) supported by theDistinguished Young Fund of Heilongjiang Province of China
文摘A cellular automaton model for simulating grain structure formation during solidification processes of Ti-45%Al(mole fraction) alloy ingot was developed, based on finite differential method for macroscopic modeling of heat transfer and a cellular automaton technique for microscopic modeling of nucleation, growth, solute redistribution and solute diffusion. The relation between the growth velocity of a dendrite tip and the local undercooling, which consists of constitutional, thermal, curvature and attachment kinetics undercooling is calculated according to the Kurz-Giovanola-Trivedi model. The effect of solidification contraction is taken into consideration. The influence of process variables upon the resultant grain structures was investigated. Special moving allocation technique was designed to minimize the computation time and memory size associated with a large number of cells. The predicted grain structures are in good agreement with the experimental results.
基金supported by the National Natural Science Foundation of China(No.52271046)the Natural Science Foundation of Hunan Province,China(No.2022JJ20061)the Fund of State Key Laboratory of Powder Metallurgy,Central South University,China.
文摘The influence of laser process parameters on the densification,phase composition,microstructure,and mechanical properties of Ta−33wt.%Ti alloy prepared via laser powder bed fusion(LPBF)was investigated.The results show that fully dense and homogeneous Ta−Ti parts can be obtained from LPBF with appropriate energy input.The cellular and dendritic structures were formed due to constitutional undercooling.Transmission electron microscopy(TEM)analysis showed that the lamellarα″phase within the cellular structures preferred to concentrate at the cellular boundaries owing to the elemental micro-segregation in the solidification front.The samples fabricated under the energy density of 166.7 J/mm^(3) had a favorable ultimate tensile strength of 806 MPa and an excellent Young’s modulus of 36.7 GPa.
基金supported by the National Nat-ural Science Foundation of China(Grant Nos.51775194 and 52090043).
文摘Hot flow forming(HFF)is a promising forming technology to manufacture thin-walled cylindrical part with longitudinal inner ribs(CPLIRs)made of magnesium(Mg)alloys,which has wide applications in the aerospace field.However,due to the thermo-mechanical coupling effect and the existence of stiffened structure,complex microstructure evolution and uneven microstructure occur easily at the cylindrical wall(CW)and inner rib(IR)of Mg alloy thin-walled CPLIRs during the HFF.In this paper,a modified cellular automaton(CA)model of Mg alloy considering the effects of deformation conditions on material parameters was developed using the artificial neural network(ANN)method.It is found that the ANN-modified CA model exhibits better predictability for the microstructure of hot deformation than the conventional CA model.Furthermore,the microstructure evolution of ZK61 alloy CPLIRs during the HFF was analyzed by coupling the modified CA model and finite element analysis(FEA).The results show that compared with the microstructure at the same layer of the IR,more refined grains and less sufficient DRX resulted from larger strain and strain rate occur at that of the CW;various differences of strain and strain rate in the wall-thickness exist between the CW and IR,which leads to the inhomogeneity of microstructure rising firstly and declining from the inside layer to outside layer;the obtained Hall-Petch relationship between the measured microhardness and predicted grain sizes at the CW and the IR indicates the reliability of the coupled FEA-CA simulation results.