Nucleation and growth model based on Cellular Automation(CA) incorporated with macro heat transfer calculation was presented to simulate the microstructure of aluminum twin-roll casting. The dynamics model of dendrite...Nucleation and growth model based on Cellular Automation(CA) incorporated with macro heat transfer calculation was presented to simulate the microstructure of aluminum twin-roll casting. The dynamics model of dendrite tip (KGT model) was amended in view of characteristics of aluminum twin-roll casting. Through the numerical simulation on solidification structure under different casting speeds, it can be seen that when the casting speed is 1.3 m/min, that is, under conditions of conventional roll casting, coarse columnar grains dominate the solidification structure, and equiaxed grains exist in the center of aluminum strip. When the casting speed continuously increases to 8 m/min, that is, under the conditions of thin-gauge high-speed casting, columnar grains in solidification structure all convert into equiaxed grains. Experimental and numerical results agree well.展开更多
基金Project(50564004) supported by the National Natural Science Foundation of ChinaProject(G2000067208-3) supported by the National Basic Research Program of ChinaProject(0250020) supported by the Natural Science Foundation of Jiangxi Province, China
文摘Nucleation and growth model based on Cellular Automation(CA) incorporated with macro heat transfer calculation was presented to simulate the microstructure of aluminum twin-roll casting. The dynamics model of dendrite tip (KGT model) was amended in view of characteristics of aluminum twin-roll casting. Through the numerical simulation on solidification structure under different casting speeds, it can be seen that when the casting speed is 1.3 m/min, that is, under conditions of conventional roll casting, coarse columnar grains dominate the solidification structure, and equiaxed grains exist in the center of aluminum strip. When the casting speed continuously increases to 8 m/min, that is, under the conditions of thin-gauge high-speed casting, columnar grains in solidification structure all convert into equiaxed grains. Experimental and numerical results agree well.