The rapid developing of the fourth generation(4G)wireless communications has aroused tremendous demands for high speed data transmission due to the dissemination of various types of the intelligent user terminals as w...The rapid developing of the fourth generation(4G)wireless communications has aroused tremendous demands for high speed data transmission due to the dissemination of various types of the intelligent user terminals as well as the wireless multi-media services.It is predicted that the network throughput will increase展开更多
To implement the access and backhaul networks for Smart Metering (SM) systems various technologies are combined with the existing communications infrastructure. This paper deals with data transmission in SM systems, f...To implement the access and backhaul networks for Smart Metering (SM) systems various technologies are combined with the existing communications infrastructure. This paper deals with data transmission in SM systems, focusing on how the existing cellular networks infrastructure is employed to implement SM access communication networks. The analysis aims at analyzing the role of the cellular communications infrastructure taking into account the spatial distribution and installation points of the smart meters, the urban and topological characteristics of the SM deployment areas and the common practice so far followed by the utilities. It is demonstrated that cellular communications, either exclusively or combined with power line communications, enable immediate and scalable deployment of SM access communication networks at low installation cost, thus constituting the basic option for the implementation of smart metering.展开更多
The demand for wireless data has been driving network capacity to double about every two years for the past 50 years, if not 100 years, and this has come to be known as Cooper's Law. In recent years, this trend has a...The demand for wireless data has been driving network capacity to double about every two years for the past 50 years, if not 100 years, and this has come to be known as Cooper's Law. In recent years, this trend has accelerated as a greater proportion of the population adopts wireless devices with ever greater capabilities, including tablets that support HD video and other advanced capabilities.展开更多
Na^(+)/K^(+)-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na^(+)out of and two K^(+)into cells.Additionally,Na^...Na^(+)/K^(+)-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na^(+)out of and two K^(+)into cells.Additionally,Na^(+)/K^(+)-ATPase participates in Ca^(2+)-signaling transduction and neurotransmitter release by coordinating the ion concentration gradient across the cell membrane.Na^(+)/K^(+)-ATPase works synergistically with multiple ion channels in the cell membrane to form a dynamic network of ion homeostatic regulation and affects cellular communication by regulating chemical signals and the ion balance among different types of cells.Therefo re,it is not surprising that Na^(+)/K^(+)-ATPase dysfunction has emerged as a risk factor for a variety of neurological diseases.However,published studies have so far only elucidated the important roles of Na^(+)/K^(+)-ATPase dysfunction in disease development,and we are lacking detailed mechanisms to clarify how Na^(+)/K^(+)-ATPase affects cell function.Our recent studies revealed that membrane loss of Na^(+)/K^(+)-ATPase is a key mechanism in many neurological disorders,particularly stroke and Parkinson's disease.Stabilization of plasma membrane Na^(+)/K^(+)-ATPase with an antibody is a novel strategy to treat these diseases.For this reason,Na^(+)/K^(+)-ATPase acts not only as a simple ion pump but also as a sensor/regulator or cytoprotective protein,participating in signal transduction such as neuronal autophagy and apoptosis,and glial cell migration.Thus,the present review attempts to summarize the novel biological functions of Na^(+)/K^(+)-ATPase and Na^(+)/K^(+)-ATPase-related pathogenesis.The potential for novel strategies to treat Na^(+)/K^(+)-ATPase-related brain diseases will also be discussed.展开更多
In the near future, there are expected to have at least billions of devices interconnected with each other. How to connect so many devices becomes a big issue. Machine-to-Machine (M2M) communications serve as the fund...In the near future, there are expected to have at least billions of devices interconnected with each other. How to connect so many devices becomes a big issue. Machine-to-Machine (M2M) communications serve as the fundamental underlying technologies to support such Internet of Things (IoT) applications. The characteristics and services requirements of machine type communication devices (MTCDs) are totally different from the existing ones. Existing network technologies, ranging from personal area networks to wide area networks, are not well suited for M2M communications. Therefore, we first investigate the characteristics and service requirements for MTCDs. Recent advances in both cellular and capillary M2M communications are also discussed. Finally, we list some open issues and future research directions. 展开更多
In terms of the carrier-to-interference-ratio, the performance of co-channel interference in cellular communications systems is studied. The approach is based on an improved analysis, which allows to take into account...In terms of the carrier-to-interference-ratio, the performance of co-channel interference in cellular communications systems is studied. The approach is based on an improved analysis, which allows to take into account some area in the desired sector may not be interfered by some co-channel sectors with exact geometrical analysis, instead of the entire sector interfered by some co-channel sectors. Other features, such as power control and the number of interferences are also included.展开更多
Specific regulation of the senescence-associated secretory phenotype(SASP)is vital to block senescence-induced detrimental cellular plasticity.Recently,some chemical compounds called senomorphics have demonstrated suc...Specific regulation of the senescence-associated secretory phenotype(SASP)is vital to block senescence-induced detrimental cellular plasticity.Recently,some chemical compounds called senomorphics have demonstrated such potential,but it remains challenging to achieve site-specific activation and real-time monitoring of the action of senomorphics,posing great obstacles for transformable applications.Here,we report a tailor-made hydrogen sulfide(H_(2)S)donor(Lyso-FH_(2)S-Gal)as a new class of molecule senomorphics for spatially controlled delivery of H_(2)S for visualization of regulation of cellular senescence.It comprises four functional moieties in a single molecular structure,including a lysosome-targeting group for cell recognition,a lysosomal enzyme-cleaved scaffold for site-specific activation,thiocarbamate as the H_(2)S precursor,and a switchable fluorophore for concurrent selfreporting of H_(2)S release and senescence imaging.Lyso-FH_(2)S-Gal exhibited remarkable response selectivity,sustained H_(2)S release,and 141-fold fluorescence enhancement.In cellular models,Lyso-FH_(2) S-Gal preferentially enriched in senescent cells over nonsenescent cells,and alleviated the levels of SASP and reactive oxygen species(ROS)in senescent cells,while remaining inert in nonsenescent cells.More impressively,it efficiently inhibited the SASPmediated crosstalk between senescent cells and surrounding nonsenescent cells,thereby preventing senescence propagation.This work offers a useful molecular tool with the hope for controlled intervention of senescence-related important biological processes.展开更多
Cellular networks are overloaded due to the mobile traffic surge,and mobile social networks(MSNets) can be leveraged for traffic offloading.In this paper,we study the issue of choosing seed users for maximizing the mo...Cellular networks are overloaded due to the mobile traffic surge,and mobile social networks(MSNets) can be leveraged for traffic offloading.In this paper,we study the issue of choosing seed users for maximizing the mobile traffic offloaded from cellular networks.We introduce a gossip-style social cascade(GSC) model to model the epidemic-like information diffusion process in MSNets.For static-case and mobile-case networks,we establish an equivalent view and a temporal mapping of the information diffusion process,respectively.We further prove the submodularity in the information diffusion and propose a greedy algorithm to choose the seed users for traffic offloading,yielding a sub-optimal solution to the NP-hard traffic offloading maximization(TOM) problem.Experiments are carried out to study the offloading performance,illustrating that the greedy algorithm significantly outperforms the heuristic and random algorithms,and user mobility can help further reduce cellular load.展开更多
Natural killer (NK) cells eliminate a large variety of tumor cells and abnormal cells. However, NK cells in the tumor microenvironment (TME) are often functionally depleted. A few subsets of NK cells even promote tumo...Natural killer (NK) cells eliminate a large variety of tumor cells and abnormal cells. However, NK cells in the tumor microenvironment (TME) are often functionally depleted. A few subsets of NK cells even promote tumor growth. This study reviewed the biological properties of NK cells, the dynamic phenotypic changes of NK cells in the TME, and the communication between NK cells and other immune and nonimmune cells.展开更多
文摘The rapid developing of the fourth generation(4G)wireless communications has aroused tremendous demands for high speed data transmission due to the dissemination of various types of the intelligent user terminals as well as the wireless multi-media services.It is predicted that the network throughput will increase
文摘To implement the access and backhaul networks for Smart Metering (SM) systems various technologies are combined with the existing communications infrastructure. This paper deals with data transmission in SM systems, focusing on how the existing cellular networks infrastructure is employed to implement SM access communication networks. The analysis aims at analyzing the role of the cellular communications infrastructure taking into account the spatial distribution and installation points of the smart meters, the urban and topological characteristics of the SM deployment areas and the common practice so far followed by the utilities. It is demonstrated that cellular communications, either exclusively or combined with power line communications, enable immediate and scalable deployment of SM access communication networks at low installation cost, thus constituting the basic option for the implementation of smart metering.
文摘The demand for wireless data has been driving network capacity to double about every two years for the past 50 years, if not 100 years, and this has come to be known as Cooper's Law. In recent years, this trend has accelerated as a greater proportion of the population adopts wireless devices with ever greater capabilities, including tablets that support HD video and other advanced capabilities.
基金supported by the National Natural Science Foundation of China,No.82173800 (to JB)Shenzhen Science and Technology Program,No.KQTD20200820113040070 (to JB)。
文摘Na^(+)/K^(+)-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na^(+)out of and two K^(+)into cells.Additionally,Na^(+)/K^(+)-ATPase participates in Ca^(2+)-signaling transduction and neurotransmitter release by coordinating the ion concentration gradient across the cell membrane.Na^(+)/K^(+)-ATPase works synergistically with multiple ion channels in the cell membrane to form a dynamic network of ion homeostatic regulation and affects cellular communication by regulating chemical signals and the ion balance among different types of cells.Therefo re,it is not surprising that Na^(+)/K^(+)-ATPase dysfunction has emerged as a risk factor for a variety of neurological diseases.However,published studies have so far only elucidated the important roles of Na^(+)/K^(+)-ATPase dysfunction in disease development,and we are lacking detailed mechanisms to clarify how Na^(+)/K^(+)-ATPase affects cell function.Our recent studies revealed that membrane loss of Na^(+)/K^(+)-ATPase is a key mechanism in many neurological disorders,particularly stroke and Parkinson's disease.Stabilization of plasma membrane Na^(+)/K^(+)-ATPase with an antibody is a novel strategy to treat these diseases.For this reason,Na^(+)/K^(+)-ATPase acts not only as a simple ion pump but also as a sensor/regulator or cytoprotective protein,participating in signal transduction such as neuronal autophagy and apoptosis,and glial cell migration.Thus,the present review attempts to summarize the novel biological functions of Na^(+)/K^(+)-ATPase and Na^(+)/K^(+)-ATPase-related pathogenesis.The potential for novel strategies to treat Na^(+)/K^(+)-ATPase-related brain diseases will also be discussed.
文摘In the near future, there are expected to have at least billions of devices interconnected with each other. How to connect so many devices becomes a big issue. Machine-to-Machine (M2M) communications serve as the fundamental underlying technologies to support such Internet of Things (IoT) applications. The characteristics and services requirements of machine type communication devices (MTCDs) are totally different from the existing ones. Existing network technologies, ranging from personal area networks to wide area networks, are not well suited for M2M communications. Therefore, we first investigate the characteristics and service requirements for MTCDs. Recent advances in both cellular and capillary M2M communications are also discussed. Finally, we list some open issues and future research directions.
基金This workis supported by Applied Basic Research Programs Foundation of Chongqing Municipal Education Commission(050303) .
文摘In terms of the carrier-to-interference-ratio, the performance of co-channel interference in cellular communications systems is studied. The approach is based on an improved analysis, which allows to take into account some area in the desired sector may not be interfered by some co-channel sectors with exact geometrical analysis, instead of the entire sector interfered by some co-channel sectors. Other features, such as power control and the number of interferences are also included.
基金supported by the National Natural Science Foundation of China(grant nos.NSFC22274044 and 21877031)the National Key Research and Development Program of China(grant no.2020YFA0210802)the Science and Technology Innovation Program of Hunan Province(grant no.2018RS3043).
文摘Specific regulation of the senescence-associated secretory phenotype(SASP)is vital to block senescence-induced detrimental cellular plasticity.Recently,some chemical compounds called senomorphics have demonstrated such potential,but it remains challenging to achieve site-specific activation and real-time monitoring of the action of senomorphics,posing great obstacles for transformable applications.Here,we report a tailor-made hydrogen sulfide(H_(2)S)donor(Lyso-FH_(2)S-Gal)as a new class of molecule senomorphics for spatially controlled delivery of H_(2)S for visualization of regulation of cellular senescence.It comprises four functional moieties in a single molecular structure,including a lysosome-targeting group for cell recognition,a lysosomal enzyme-cleaved scaffold for site-specific activation,thiocarbamate as the H_(2)S precursor,and a switchable fluorophore for concurrent selfreporting of H_(2)S release and senescence imaging.Lyso-FH_(2)S-Gal exhibited remarkable response selectivity,sustained H_(2)S release,and 141-fold fluorescence enhancement.In cellular models,Lyso-FH_(2) S-Gal preferentially enriched in senescent cells over nonsenescent cells,and alleviated the levels of SASP and reactive oxygen species(ROS)in senescent cells,while remaining inert in nonsenescent cells.More impressively,it efficiently inhibited the SASPmediated crosstalk between senescent cells and surrounding nonsenescent cells,thereby preventing senescence propagation.This work offers a useful molecular tool with the hope for controlled intervention of senescence-related important biological processes.
基金supported by the National Basic Research Program of China(973 Program) through grant 2012CB316004the Doctoral Program of Higher Education(SRFDP)+1 种基金Research Grants Council Earmarked Research Grants(RGC ERG) Joint Research Scheme through Specialized Research Fund 20133402140001National Natural Science Foundation of China through grant 61379003
文摘Cellular networks are overloaded due to the mobile traffic surge,and mobile social networks(MSNets) can be leveraged for traffic offloading.In this paper,we study the issue of choosing seed users for maximizing the mobile traffic offloaded from cellular networks.We introduce a gossip-style social cascade(GSC) model to model the epidemic-like information diffusion process in MSNets.For static-case and mobile-case networks,we establish an equivalent view and a temporal mapping of the information diffusion process,respectively.We further prove the submodularity in the information diffusion and propose a greedy algorithm to choose the seed users for traffic offloading,yielding a sub-optimal solution to the NP-hard traffic offloading maximization(TOM) problem.Experiments are carried out to study the offloading performance,illustrating that the greedy algorithm significantly outperforms the heuristic and random algorithms,and user mobility can help further reduce cellular load.
基金supported by the National Natural Science Foundation of China(No.81872200,and 31900558)the Hubei Provincial Youth Talents Program for Public Health China(No.WSJKRC2022013)+3 种基金Wuhan Young and Middle-aged Medical Backbone Talents Training Project China(No.WHQG201904)the Yellow Crane Talent Program of Wuhan City China(No.HHYC2019002)the Natural Science Foundation of Hubei Province China(No.2020CFB298)the Zhongnan Hospital of Wuhan University Science,Technology and Innovation Seed Fund(No.ZNPY2018090,and ZNPY2019002),China.
文摘Natural killer (NK) cells eliminate a large variety of tumor cells and abnormal cells. However, NK cells in the tumor microenvironment (TME) are often functionally depleted. A few subsets of NK cells even promote tumor growth. This study reviewed the biological properties of NK cells, the dynamic phenotypic changes of NK cells in the TME, and the communication between NK cells and other immune and nonimmune cells.