BACKGROUND The possible existence of an acini–islet–acinar(AIA)reflex,involving mutual amylase and insulin interactions,was investigated in the current acute experiment on pigs.AIM To confirm the existence of an AIA...BACKGROUND The possible existence of an acini–islet–acinar(AIA)reflex,involving mutual amylase and insulin interactions,was investigated in the current acute experiment on pigs.AIM To confirm the existence of an AIA reflex and justify the placement of the exocrine and endocrine pancreatic components within the same organ.METHODS The study was performed on six pigs under general anesthesia.An intravenous glucose tolerance test was performed,with a bolus infusion of 50%glucose to the jugular vein,while amylase(5000 U/kg)or vehicle intrapancreatic infusions were administered via the pancreaticoduodenalis cranialis artery during 30 min with a 1 mL/min flow rate.RESULTS The amylase infusion to pancreatic arterial circulation inhibited and delayed the insulin release peak which is usually associated with the highest value of blood glucose and is typically observed at 15 min after glucose infusion,for>1 h.The intrapancreatic infusion of the vehicle(saline)did not have any effect on the time frame of insulin release.Infusion of 1%bovine serum albumin changed the insulin release curve dramatically and prolonged the high range of insulin secretion,far beyond the glucose peak.CONCLUSION Intrapancreatic arterial infusion of amylase interrupted the integrated glucose–insulin interactions.This confirms an AIA reflex and justifies placement of the exocrine and endocrine pancreatic components within the same organ.展开更多
Objective] The aim of this study was to investigate the effects of exoge-nous amylases and Ca2+, Mn2+ and K+ on the amylase specific activities and starch degradation of the upper leaves of 'KRK26' planted in Yun...Objective] The aim of this study was to investigate the effects of exoge-nous amylases and Ca2+, Mn2+ and K+ on the amylase specific activities and starch degradation of the upper leaves of 'KRK26' planted in Yunnan Province during flue-curing. [Method] The amylase specific activities and starch degradation of the leaves were determined by using spectrophotometry. [Result] The 8 U/g exogenous α-amy-lase could improve the specific activity of the leaf α-amylase at yel owing and color-fixing stages, but could not at stem-drying stage, and similarly, the 80 U/g exoge-nous β-amylase could improved the specific activity of the leaf β-amylase at the yel owing stage and the early period of color-fixing stage. The leaf starch could be enhanced to degrade by the exogenous α- or β-amylases and the enhancing effect of the former was stronger than that of the later. 1.50 mg/ml Ca2+ improved the specific activity of the leaf (α+β)-amylase mainly due to its enhancing effect on the leaf α-amylase, and increased the starch degradation. 4 mmol/L Mn2+ inhibited the leaf α-amylase from yel owing to the early period of color-fixing and the β- and (α+β)-amylases from the yel owing to the later period of color-fixing, but enhanced the leafα-amylase from the later period of color-fixing to the later period of stem-drying and the β- and (α+β)-amylases at the later period of stem-drying. Meanwhile, Mn2+ ham-pered the starch degradation during yel owing, but promoted it from the early period of color-fixing to stem-drying. 1 mg/ml K+ enhanced the leaf α-, β- and (α+β)-amy-lases during the yel owing stage, but lowered them from the early period of color-fix-ing to the later period of stem-drying, and always inhibited the leaf starch degrada-tion. [Conclusion] The exogenous α-, β- amylases and Ca2+ of suitable concentra-tions could be used to treat the tobacco leaves before flue-curing to improve the leaf starch degradation during the curing.展开更多
The property of major cellulases from the guts of Anoplophora glabripennis larvae have been characterized. The optimal temperatures of both β 1,4 glucosidase (β glucosidase) and endo β 1,4 endoglucanase (...The property of major cellulases from the guts of Anoplophora glabripennis larvae have been characterized. The optimal temperatures of both β 1,4 glucosidase (β glucosidase) and endo β 1,4 endoglucanase (endoglucanase, Cx) are 40℃. The β glucosidase was optimally active at pH 4\^8, while the optimal activity of the endoglucanase occurred at pH 4 4 5 6 The endoglucanase was active with a wide range of pH and temperature, the levels of activity from 25℃ to 50℃ were more than 80%, and the activity remained 60% between pH 3 2 and pH 7 2. The endoglucanase exhibited higher thermal stability than β glucosidase. Both enzymes lose their activities by heat treatment at 60℃. Two isozymes of endoglucanase were detected in sodium carboxymethylcellulose polyacrymide gels (CMC gel) by chemical colorization, and purified by elution from the gel slices. The molecular weights of the two isozymes were estimated as 26kD and 39kD respectively. Moreover molecular characteristics of the two isozymes are currently underway.展开更多
[Objective] The aim of this study was to find out a new Trichoderma vride K strain highly producing cellulase.[Method] Ultraviolet(UV) was used to induce mutagenesis on T.vride K and to select out a new Trichoderma ...[Objective] The aim of this study was to find out a new Trichoderma vride K strain highly producing cellulase.[Method] Ultraviolet(UV) was used to induce mutagenesis on T.vride K and to select out a new Trichoderma vride strain highly producing cellulase from the first round and further selection.[Result] A new T.vride strain K6 with high yield of cellulase was obtained with the enzyme production amount of 1.39 times over that of starting strain K.This strain showed highest cellulase yield under the culture condition of 28 ℃ for 96 h.[Conclusion] The strain K6 selected out from induced mutation is endowed with better capacity of producing cellulase,which provides a new method for the utilization of straw.展开更多
[ Objective] The study was to understand the changes of amylase(AMY) and superoxide dismutase(SOD) isozymes during the ger- mination process of Emmenopterys henryi Oliv seeds. [ Metbod] By employing polyacrylamide...[ Objective] The study was to understand the changes of amylase(AMY) and superoxide dismutase(SOD) isozymes during the ger- mination process of Emmenopterys henryi Oliv seeds. [ Metbod] By employing polyacrylamide gel electrophoresis method, the expressions of AMY and SOD isozymes during seed germination process were analyzed. ~ Result] The main AMY bands remained strong during the whole peri- od and a new band A2 appeared in the middle and late period of seed germination. Some new SOD bands occurred at the early stage, then be- came weak or disappeared in the middle period, and band S6 became intense in the late peried. [ Conclusion.] The expression of AMY and SOD isozyme gene has temporal difference during germination of E. henryi Oliv seeds.展开更多
[Objective] The aims were to investigate the screening and identification of amylase-producing marine bacteria from Arctic sea and the optimization of the amylase producing conditions. [Method] A high-yield strain for...[Objective] The aims were to investigate the screening and identification of amylase-producing marine bacteria from Arctic sea and the optimization of the amylase producing conditions. [Method] A high-yield strain for producing amylase named ArcB84A was isolated from a total of 156 marine bacteria of Arctic sea. Then,the morphological identification of the strain,molecular identification of 16S rRNA and optimization of fermentation conditions were conducted. [Result] ArcB84A strain was a member of Pseudoalteromonas genus. The optimum conditions for enzyme production of B84A strain included that,the initial pH value of the medium was 7.0-8.0,and the best carbon and nitrogen sources respectively were 5‰ glucose and peptone. Surfactants including TritonX-100,Tween20 and Tween80 could increase amylase activity of the strain,in which,the effect of 10‰ Tween80 was the most obvious.展开更多
Starch degradation in cells is closely associated with cereal seed germination, photosynthesis in leaves, carbohydrate storage in tuberous roots, and fleshy fruit development. α_Amylase is considered as one of the ke...Starch degradation in cells is closely associated with cereal seed germination, photosynthesis in leaves, carbohydrate storage in tuberous roots, and fleshy fruit development. α_Amylase is considered as one of the key enzymes catalyzing starch breakdown, but up to date its role in starch breakdown in living cells remains unclear because the enzyme was often shown extrachloroplastic in living cells. The present experiment showed that α_amylase activity was progressively increasing concomitantly with the decreasing starch concentrations during the development of apple ( Malus domestica Borkh cv. Starkrimson) fruit. The apparent amount of α_amylase assessed by Western blotting also increased during the fruit development, which is consistent with the seasonal changes in the enzyme activity. The enzyme subcellular_localization studies via immunogold electron_ microscopy technique showed that α_amylase visualized by gold particles was predominantly located in plastids, but the gold particles were scarcely found in other subcellular compartments. A high density of the enzyme was observed at the periphery of starch granules during the middle and late developmental stages. These data proved that the enzyme is compartmented in its functional sites in the living cells of the fruit. The predominantly plastid_distributed pattern of α_amylase in cells was shown unchanged throughout the fruit development. The density of gold particles (α_amylase) in plastids was increasing during the fruit development, which is consistent with the results of Western blotting. So it is considered that α_amylase is involved in starch hydrolysis in plastids of the fruit cells.展开更多
Background: The effect of amylases combined with exogenous carbohydrase and protease in a newly harvested corn diet on starch digestibility, intestine health and cecal microbiota was investigated in broiler chickens.M...Background: The effect of amylases combined with exogenous carbohydrase and protease in a newly harvested corn diet on starch digestibility, intestine health and cecal microbiota was investigated in broiler chickens.Methods: Two hunderd and eighty-eight 5-day-old female chickens were randomly divided into six treatments: a newly harvested corn-soybean meal diet(control); control supplemented with 1,500 U/g α-amylase(Enzyme A);Enzyme A + 300 U/g amylopectase + 20,000 U/g glucoamylase(Enzyme B); Enzyme B + protease 10,000 U/g(Enzyme C); Enzyme C + xylanase 15,000 U/g(Enzyme D); and Enzyme D + cellulase 200 U/g + pectinase 1,000 U/g(Enzyme E). Growth performance, starch digestibility, digestive organ morphology, and intestinal microbiota were evaluated in the birds at 16 and 23 d of age.Results: Compared with the control diet, supplementation with Enzyme A significantly decreased ileum lesion scoring at 16 d of age(P < 0.05); supplementation with Enzyme B or Enzyme C showed positive effects on ileal amylopectin and total starch digestibility(P < 0.05); Broilers fed with a diet supplemented with Enzyme D had a tendency to decrease body weight gain at 23 d. Enzyme E supplementation improved lesion scoring of jejunum and ileum at 16 d(P < 0.05), and increased ileal amylopectin or total starch digestibility at 23 d(P < 0.05).Supplementation of enzymes changed cecal microbiota diversity. High numbers of Campylobacter, Helicobacter and Butyricicoccus, Anaerostipes and Bifidobacterium, Sutterella and Odoribacter were the main genera detected in supplementations with Enzymes B, C, D, and E respectively.Conclusions: Supplementation with amylase combined with glucoamylase or protease showed a beneficial effect on starch digestibility and intestinal microbiota diversity, and increased growth of broilers fed with newly harvested corn.展开更多
One of the latest sources of alternative energy, bioethanol, has been the focus of modem research, The production of bioethanol is commonly restricted by the activity of cellulase. Therefore, cellulase has become one ...One of the latest sources of alternative energy, bioethanol, has been the focus of modem research, The production of bioethanol is commonly restricted by the activity of cellulase. Therefore, cellulase has become one of the critical issues in the conversion of lignocelluloses to bioethanol. This article is an overview of the sources and factors affecting enzyme activity, as well as methods of evaluation and utilizations of cellulase. We conclude that a combination of cellulases from various strains can enhance hydrolysis of substrates. Large enough amounts of cellobiase or sufficient cellobiase activity can reduce the inhibition to exoglucanase activity of cellobiose. Characterization and exploitation of cellulase should focus on a definite substrate. Promotion and mixed incubation of strains can reduce the cost of industrial utilization of cellulase.展开更多
[Objective] The research aimed to breed the high-yield production strain of cellulase.[Method] Aspergillus niger was used as the starting strain,and a high-yield production strain of cellulase was selected after UV mu...[Objective] The research aimed to breed the high-yield production strain of cellulase.[Method] Aspergillus niger was used as the starting strain,and a high-yield production strain of cellulase was selected after UV mutation treatment.[Result] Under the suitable condition,the strain 2(15) with the highest CMC production capacity was selected,which nearly increased 50% than that of the starting strain.[Conclusion] The research provided the foundation for its appliation in the feed production in the future.展开更多
The cellulase cocktail produced by marine Aspergillus niger exhibits a property of salt-tolerance,which is of great potential in cellulose degradation in high salt environment.In order to explain the mechanism on the ...The cellulase cocktail produced by marine Aspergillus niger exhibits a property of salt-tolerance,which is of great potential in cellulose degradation in high salt environment.In order to explain the mechanism on the salttolerance of the cellulase cocktail produced by marine A.niger,six cellulase components(AnCel6,AnCel7A,AnCel7B,AnEGL,AnBGL1 and AnBGL2)were obtained by directed expression.Studies on their enzymatic properties revealed that oneβ-glucosidase(AnBGL2)and one endoglucanase(AnEGL)exhibited an outstanding salttolerant property,and one cellobiohydrolase(AnCel7B)exhibited a certain salt-tolerant property.Subsequent study revealed that the salt-tolerant An EGL and AnCel7B endowed the cellulase cocktail with stronger salttolerant property,while the salt-tolerant An BGL2 had no positive effect.Moreover,after overexpression of AnCel6,AnCel7A,AnCel7B and AnEGL,the activity of cellulase cocktail increased by 80%,70%,63%and 68%,respectively.However,the activity of cellulase cocktail was not improved after overexpression of AnBGL1 and AnBGL2.After mixed-strain fermentation with cellobiohydrolase recombinants(cel6 a,cel7a and cel7b recombinants)and endoglucanase recombinant(egl recombinant),the the activity of cellulase cocktail increased by 114%,102%and91%,respectively.展开更多
[ Objective] To determine the best culture time and inducer for the biosynthesis of cellulase by Trichoderma vivide and thus provide the conditions for its practical application. [ Method] Within the 7 d after the ino...[ Objective] To determine the best culture time and inducer for the biosynthesis of cellulase by Trichoderma vivide and thus provide the conditions for its practical application. [ Method] Within the 7 d after the inoculation of Trichoderma vivide ZJ strain, the cultures were collected once every day, and the enzyme yield was respectively determined by 3,5-dinitresalicylic acid assay. The Trichodernm vivide ZJ strain was inoculated into basal medium added by different types of carbon sources or nitrogen sources, and the growth of Trichoderma viride was observed. And the mycalium weight as well as the yield of CMCase enzyme after different culture time was determined. [Result] The optimal culture time for Trichoderma viride ZJ strain was 72-96 h; it grew rapidly in the medium added by monosaccharide or disaccharide as carbon sources, and the production of CMCase enzyme reached a peak after 3 -4 d post inoculation. Cellulose powder was the best carbon inducer. The compound nitrogen source composed of 1 g/L ammonium sulfate and 2 g/L yeast extract was the most suitable for the growth of ZJ strain and produced the highest enzyme activity. [ Condusion] The largest enzyme yield should be obtained after 3-4 d post the inoculation of Trichoderma viride ZJ strain. With cellulose powder as a carbon source and the complex substance composed of ammonium sulfate and yeast extract as a nitrogen source, Trichoderma viride has the highest enzyme activity.展开更多
Locoweed is a poisonous plant wildly distributed in most areas of the world,which causes livestock poisoning or death with serious economic loss.The Astragalus strictus belongs to a species of Iocoweed.It is mainly di...Locoweed is a poisonous plant wildly distributed in most areas of the world,which causes livestock poisoning or death with serious economic loss.The Astragalus strictus belongs to a species of Iocoweed.It is mainly distributed in Tibet of China and is a serious hazard to the local livestock industry.The objective of this study is extracting and purifying condition of Swainsonine from Astragalus strictus with the cellulase extraction method.An optimum extracting technology of SW from Astragalus strictus was investigated through the orthogonal experiment under the cellulose assistance conditions,and then the content of swainsonine was analyzed with gas chromatography (GC) method.The optimized extraction conditions were as follow:The crushed mesh is 40; solid-liquid ratio is 1∶40 (g/ml); enzyme dosage is 3.5%; enzymatic time is 3 h.Under the above conditions,the extraction percentage of the swainsonine was 0.003 941%.The conditions for extracting swainsonine with cellulase extraction method are mild,it is easy to utilize industrial production.It is benefit for producing swainsonine from Astragalus strictus.展开更多
A seed is the carrier of life,and research on the heat and mass transfer of a seed has already stridden toward the level of microcosm,such as cell protoplasm,cell organism,and molecular membrane.By means of a transmis...A seed is the carrier of life,and research on the heat and mass transfer of a seed has already stridden toward the level of microcosm,such as cell protoplasm,cell organism,and molecular membrane.By means of a transmission electron microscope,the authors of this paper observed the microstructure of cotyledon tissue slices of the Chinese cabbage seed with a moisture content of 13% (on dry basis) and that with a moisture content of 4.3% (on dry basis) for drying 2 h at 45 ℃.The compared result was that only wrinkles had been discovered on the cell walls of the seed dried for 2 h,without any significant change for other organelles.Study on the enzyme activity shows that after a germination for 48 h,the relative activity of α amylase of the Chinese cabbage seed dried for 2 h at 45 ℃,decreased by 5.8%,whereas that of the seed dried 2 h at a temperature of 67 ℃ decreased by 30.1%.This work shows that the drying factors have greatly influence on the seed microstructure,enzyme activity,which is directly positive to seed viability.Combined with the analysis of the critical safe drying temperature of the vegetable seed,it can be concluded that enzyme activity is also the function of the drying temperature,the moisture content and the drying time.展开更多
[Objective] The aim was to study the effect of mercury stress on seed germination and seedlings growth.[Method]using Zhengzhou 9023 as the experimental material and cultured in water,to study the effect of the germina...[Objective] The aim was to study the effect of mercury stress on seed germination and seedlings growth.[Method]using Zhengzhou 9023 as the experimental material and cultured in water,to study the effect of the germinating rate,seedling height,root length,seedling's fresh weight,the activities of peroxidase(POD)and amylase in leaf,root and germinating embryo at different concentrations of Hg2+(0.025,0.050,0.100,0.200,0.300,0.400,0.500 mmol/L).[Result]Low concentrations of Hg2+(≤ 0.10 mmol/L)have little effect on seed germination,seedling height,root length and fresh weight;high concentrations of Hg2+( 0.10 mmol/L)have significantly inhibited seed germination and seedling growth.Low concentration of Hg2+(≥ 0.025 mmol/L)could increase POD activity and inhibit the amylase activity significantly,and the effects have increased with the increasing of Hg2+ concentrations.[Conclusion]Hg2+ stress could change the activities of POD and amylase in leaf,root and germinating embryo,influence the energy and substrate supply which was required for normal metabolism of lipid oxidation,and inhibit seedling growth ultimately.展开更多
Macroamylasemia is a condition of elevated serum amylase levels in which normal serum amylase form a complex with high molecular weight proteins such as immunoglobulins. This is a case report on a patient with macroam...Macroamylasemia is a condition of elevated serum amylase levels in which normal serum amylase form a complex with high molecular weight proteins such as immunoglobulins. This is a case report on a patient with macroamylasemia following acute asthmatic bronchitis. A 5-year-old male with cerebral palsy and developmental retardation was admitted to our hospital because of high fever and severe cough. Treatment of the respiratory symptoms provided symptomatic improvement, but the serum amylase levels became suddenly elevated. Although acute pancreatitis associated with respiratory infection was initially suspected, a predominant salivary isoamylase, normal serum lipase level, low urine amylase level, and low amylase-creatinine clearance ratio (ACCR) (0.58%) indicated macroamylasemia. The serum amylase level decreased, and the ACCR increased within normal range 2 weeks after discharge. Both of these indicators have been within normal range over the past year. Transient macroamylasemia can be misdiagnosed as acute pancreatitis, especially in a severely multiple-handicapped child who is unable to complain. The ACCR is useful in the diagnosis of macroamylasemia.展开更多
Starch degradation in cells is closely associated with cereal seed germination, photosynthesis in leaves, carbohydrate storage in tuber and tuberous roots, and fleshy fruit development. Based on previously reported ...Starch degradation in cells is closely associated with cereal seed germination, photosynthesis in leaves, carbohydrate storage in tuber and tuberous roots, and fleshy fruit development. Based on previously reported in vitro assays, β amylase is considered as one of the key enzymes catalyzing starch breakdown, but up to date its role in starch breakdown in living cells remains unclear because the enzyme was shown often extrachloroplastic in living cells. Recently we have shown for the first time that β_amylase is predominantly immuno_localized to plastids in living cells of developing apple fruit. But it remains to know whether this model of β_amylase compartmentation is more widespread in plant living cells. The present experiment, conducted in tuberous root of sweet potato ( Ipomea batatas Lam. cv. Xushu 18) and via immunogold electron_microscopy technique, showed that β amylase visualized by gold particles was predominantly localized in plastids especially at periphery of starch granules, but the gold particles were scarcely found in other subcellular compartments, indicating that the enzyme is subcellularly compartmented in the same zone as its starch substrates. The density of gold particles (β amylase) in plastids was increasing during growing season, but the predominantly plastid_distributed pattern of β amylase in cells was shown unchanged throughout the tuberous root development. These data prove that the enzyme is compartmented in its functional sites, and so provide evidence to support the possible widespread biological function of the enzyme in catalyzing starch breakdown in plant living cells or at least in living cells of plant storage organs.展开更多
This study assessed the effects of lactic acid bacteria(LAB), cellulase, cellulase-producing Bacillus pumilus and their combinations on the fermentation characteristics, chemical composition, bacterial community and i...This study assessed the effects of lactic acid bacteria(LAB), cellulase, cellulase-producing Bacillus pumilus and their combinations on the fermentation characteristics, chemical composition, bacterial community and in vitro digestibility of alfalfa silage. A completely randomized design involving a 8(silage additives)×3 or 2(silage days) factorial arrangement of treatments was adopted in the present study. The 8 silage additive treatments were: untreated alfalfa(control); two commercial additives(GFJ and Chikuso-1); an originally selected LAB(Lactobacillus plantarum a214) isolated from alfalfa silage; a cellulase-producing Bacillus(CB) isolated from fresh alfalfa; cellulase(C); and the combined additives(a214+C and a214+CB). Silage fermentation characteristics, chemical composition and microorganism populations were analysed after 30, 60 and 65 days(60 days followed by exposure to air for five additional days). In vitro digestibility was analysed for 30 and 60 days. Compared with the other treatments, selected LAB a214, a214 combined with either C or CB, and Chikuso-1 had the decreased(P<0.001) pH and increased(P<0.001) lactic acid concentrations during the ensiling process, and there were no differences(P>0.05) among them. Fiber degradation was not significant(P≥0.054) in any C or CB treatments. The a214 treatment showed the highest(P=0.009) in vitro digestibility of dry matter(595.0 g kg–1DM) after ensiling and the highest abundance of Lactobacillus(69.42 and 79.81%, respectively) on days 60 and 65, compared to all of other treatments. Overall, the silage quality of alfalfa was improved with the addition of a214, which indicates its potential as an alfalfa silage inoculant.展开更多
The changes in the activity of amylase and amylase-isoenzyme and the degradation of starch and pigment of tobacco leaf during flue-curing were studied by using the electric- heated flue-curing barn designed and made...The changes in the activity of amylase and amylase-isoenzyme and the degradation of starch and pigment of tobacco leaf during flue-curing were studied by using the electric- heated flue-curing barn designed and made by the Henan Agricultural University. The temperature and humidity of the barn were controlled automatically. The results indicated that starch in tobacco leaf decreased rapidly and leveled off after 48 h of curring, in the meantime, the content of soluble sugar increased accordingly and reached a peak at the stage of color-fixing. Both of them had a rapid-changing stage in the first 36 hours of yellowing. The changes of starch and soluble sugar contents had highly significant negative-correlation at 1 % level (rNC89 = -0.8962**, rYY85 = -0.9704**). The activity of amylase increased with the proceeding of curing and reached a peak after 36 hours of curing, then decreased. But the activity of amylase kept at a high level when the humidity of curing-environment was very low, even if the tobacco leaf had been dried. The rapid degradation of starch showed a significantly negative correlation with the increase of activity of amylase at 5 % level (rNC89 = -0.8495*, rYY85 = -0.7839*). The degradation of starch and pigment had the same regulation and had highly significant correlation at 1 % level (rNC89= 0.9649**, rYY85= 0.9428**). There were mainly three amylase-isoenzyme bands -A, B, C respectively, in tobacco leaf during flue curing. They were identified as α-AMY, β-AMY, R-AMY, and the activity of β-AMY was the highest. The changes in amylase activity and contents of starch and pigment were affected by the tobacco leaf moisture and environmental humidity during curing.展开更多
文摘BACKGROUND The possible existence of an acini–islet–acinar(AIA)reflex,involving mutual amylase and insulin interactions,was investigated in the current acute experiment on pigs.AIM To confirm the existence of an AIA reflex and justify the placement of the exocrine and endocrine pancreatic components within the same organ.METHODS The study was performed on six pigs under general anesthesia.An intravenous glucose tolerance test was performed,with a bolus infusion of 50%glucose to the jugular vein,while amylase(5000 U/kg)or vehicle intrapancreatic infusions were administered via the pancreaticoduodenalis cranialis artery during 30 min with a 1 mL/min flow rate.RESULTS The amylase infusion to pancreatic arterial circulation inhibited and delayed the insulin release peak which is usually associated with the highest value of blood glucose and is typically observed at 15 min after glucose infusion,for>1 h.The intrapancreatic infusion of the vehicle(saline)did not have any effect on the time frame of insulin release.Infusion of 1%bovine serum albumin changed the insulin release curve dramatically and prolonged the high range of insulin secretion,far beyond the glucose peak.CONCLUSION Intrapancreatic arterial infusion of amylase interrupted the integrated glucose–insulin interactions.This confirms an AIA reflex and justifies placement of the exocrine and endocrine pancreatic components within the same organ.
基金Supported by Fund from Yunnan Academy of Tobacco Agricultural Sciences for Comparative Study of the Flue-cured Tobaccos of the New Tobacco-growing Areas in Yunnan Province and Those of Zimbabwe(09YN001)~~
文摘Objective] The aim of this study was to investigate the effects of exoge-nous amylases and Ca2+, Mn2+ and K+ on the amylase specific activities and starch degradation of the upper leaves of 'KRK26' planted in Yunnan Province during flue-curing. [Method] The amylase specific activities and starch degradation of the leaves were determined by using spectrophotometry. [Result] The 8 U/g exogenous α-amy-lase could improve the specific activity of the leaf α-amylase at yel owing and color-fixing stages, but could not at stem-drying stage, and similarly, the 80 U/g exoge-nous β-amylase could improved the specific activity of the leaf β-amylase at the yel owing stage and the early period of color-fixing stage. The leaf starch could be enhanced to degrade by the exogenous α- or β-amylases and the enhancing effect of the former was stronger than that of the later. 1.50 mg/ml Ca2+ improved the specific activity of the leaf (α+β)-amylase mainly due to its enhancing effect on the leaf α-amylase, and increased the starch degradation. 4 mmol/L Mn2+ inhibited the leaf α-amylase from yel owing to the early period of color-fixing and the β- and (α+β)-amylases from the yel owing to the later period of color-fixing, but enhanced the leafα-amylase from the later period of color-fixing to the later period of stem-drying and the β- and (α+β)-amylases at the later period of stem-drying. Meanwhile, Mn2+ ham-pered the starch degradation during yel owing, but promoted it from the early period of color-fixing to stem-drying. 1 mg/ml K+ enhanced the leaf α-, β- and (α+β)-amy-lases during the yel owing stage, but lowered them from the early period of color-fix-ing to the later period of stem-drying, and always inhibited the leaf starch degrada-tion. [Conclusion] The exogenous α-, β- amylases and Ca2+ of suitable concentra-tions could be used to treat the tobacco leaves before flue-curing to improve the leaf starch degradation during the curing.
文摘The property of major cellulases from the guts of Anoplophora glabripennis larvae have been characterized. The optimal temperatures of both β 1,4 glucosidase (β glucosidase) and endo β 1,4 endoglucanase (endoglucanase, Cx) are 40℃. The β glucosidase was optimally active at pH 4\^8, while the optimal activity of the endoglucanase occurred at pH 4 4 5 6 The endoglucanase was active with a wide range of pH and temperature, the levels of activity from 25℃ to 50℃ were more than 80%, and the activity remained 60% between pH 3 2 and pH 7 2. The endoglucanase exhibited higher thermal stability than β glucosidase. Both enzymes lose their activities by heat treatment at 60℃. Two isozymes of endoglucanase were detected in sodium carboxymethylcellulose polyacrymide gels (CMC gel) by chemical colorization, and purified by elution from the gel slices. The molecular weights of the two isozymes were estimated as 26kD and 39kD respectively. Moreover molecular characteristics of the two isozymes are currently underway.
文摘[Objective] The aim of this study was to find out a new Trichoderma vride K strain highly producing cellulase.[Method] Ultraviolet(UV) was used to induce mutagenesis on T.vride K and to select out a new Trichoderma vride strain highly producing cellulase from the first round and further selection.[Result] A new T.vride strain K6 with high yield of cellulase was obtained with the enzyme production amount of 1.39 times over that of starting strain K.This strain showed highest cellulase yield under the culture condition of 28 ℃ for 96 h.[Conclusion] The strain K6 selected out from induced mutation is endowed with better capacity of producing cellulase,which provides a new method for the utilization of straw.
文摘[ Objective] The study was to understand the changes of amylase(AMY) and superoxide dismutase(SOD) isozymes during the ger- mination process of Emmenopterys henryi Oliv seeds. [ Metbod] By employing polyacrylamide gel electrophoresis method, the expressions of AMY and SOD isozymes during seed germination process were analyzed. ~ Result] The main AMY bands remained strong during the whole peri- od and a new band A2 appeared in the middle and late period of seed germination. Some new SOD bands occurred at the early stage, then be- came weak or disappeared in the middle period, and band S6 became intense in the late peried. [ Conclusion.] The expression of AMY and SOD isozyme gene has temporal difference during germination of E. henryi Oliv seeds.
基金Supported by International S&T Cooperation Program of China (No.2007DFA21300)Open Research Fund Program of the Ningbo Key Laboratory (No.2007A22007)+1 种基金Zhejiang Xinmiao Excellent Talents Program (No.2008R40G2210031)Education of Zhejiang Province Program (No.20060190)~~
文摘[Objective] The aims were to investigate the screening and identification of amylase-producing marine bacteria from Arctic sea and the optimization of the amylase producing conditions. [Method] A high-yield strain for producing amylase named ArcB84A was isolated from a total of 156 marine bacteria of Arctic sea. Then,the morphological identification of the strain,molecular identification of 16S rRNA and optimization of fermentation conditions were conducted. [Result] ArcB84A strain was a member of Pseudoalteromonas genus. The optimum conditions for enzyme production of B84A strain included that,the initial pH value of the medium was 7.0-8.0,and the best carbon and nitrogen sources respectively were 5‰ glucose and peptone. Surfactants including TritonX-100,Tween20 and Tween80 could increase amylase activity of the strain,in which,the effect of 10‰ Tween80 was the most obvious.
文摘Starch degradation in cells is closely associated with cereal seed germination, photosynthesis in leaves, carbohydrate storage in tuberous roots, and fleshy fruit development. α_Amylase is considered as one of the key enzymes catalyzing starch breakdown, but up to date its role in starch breakdown in living cells remains unclear because the enzyme was often shown extrachloroplastic in living cells. The present experiment showed that α_amylase activity was progressively increasing concomitantly with the decreasing starch concentrations during the development of apple ( Malus domestica Borkh cv. Starkrimson) fruit. The apparent amount of α_amylase assessed by Western blotting also increased during the fruit development, which is consistent with the seasonal changes in the enzyme activity. The enzyme subcellular_localization studies via immunogold electron_ microscopy technique showed that α_amylase visualized by gold particles was predominantly located in plastids, but the gold particles were scarcely found in other subcellular compartments. A high density of the enzyme was observed at the periphery of starch granules during the middle and late developmental stages. These data proved that the enzyme is compartmented in its functional sites in the living cells of the fruit. The predominantly plastid_distributed pattern of α_amylase in cells was shown unchanged throughout the fruit development. The density of gold particles (α_amylase) in plastids was increasing during the fruit development, which is consistent with the results of Western blotting. So it is considered that α_amylase is involved in starch hydrolysis in plastids of the fruit cells.
基金supported by the System for Poultry Production Technology,Beijing Innovation Research Team of Modern Agriculture(BAIC04–2016)
文摘Background: The effect of amylases combined with exogenous carbohydrase and protease in a newly harvested corn diet on starch digestibility, intestine health and cecal microbiota was investigated in broiler chickens.Methods: Two hunderd and eighty-eight 5-day-old female chickens were randomly divided into six treatments: a newly harvested corn-soybean meal diet(control); control supplemented with 1,500 U/g α-amylase(Enzyme A);Enzyme A + 300 U/g amylopectase + 20,000 U/g glucoamylase(Enzyme B); Enzyme B + protease 10,000 U/g(Enzyme C); Enzyme C + xylanase 15,000 U/g(Enzyme D); and Enzyme D + cellulase 200 U/g + pectinase 1,000 U/g(Enzyme E). Growth performance, starch digestibility, digestive organ morphology, and intestinal microbiota were evaluated in the birds at 16 and 23 d of age.Results: Compared with the control diet, supplementation with Enzyme A significantly decreased ileum lesion scoring at 16 d of age(P < 0.05); supplementation with Enzyme B or Enzyme C showed positive effects on ileal amylopectin and total starch digestibility(P < 0.05); Broilers fed with a diet supplemented with Enzyme D had a tendency to decrease body weight gain at 23 d. Enzyme E supplementation improved lesion scoring of jejunum and ileum at 16 d(P < 0.05), and increased ileal amylopectin or total starch digestibility at 23 d(P < 0.05).Supplementation of enzymes changed cecal microbiota diversity. High numbers of Campylobacter, Helicobacter and Butyricicoccus, Anaerostipes and Bifidobacterium, Sutterella and Odoribacter were the main genera detected in supplementations with Enzymes B, C, D, and E respectively.Conclusions: Supplementation with amylase combined with glucoamylase or protease showed a beneficial effect on starch digestibility and intestinal microbiota diversity, and increased growth of broilers fed with newly harvested corn.
文摘One of the latest sources of alternative energy, bioethanol, has been the focus of modem research, The production of bioethanol is commonly restricted by the activity of cellulase. Therefore, cellulase has become one of the critical issues in the conversion of lignocelluloses to bioethanol. This article is an overview of the sources and factors affecting enzyme activity, as well as methods of evaluation and utilizations of cellulase. We conclude that a combination of cellulases from various strains can enhance hydrolysis of substrates. Large enough amounts of cellobiase or sufficient cellobiase activity can reduce the inhibition to exoglucanase activity of cellobiose. Characterization and exploitation of cellulase should focus on a definite substrate. Promotion and mixed incubation of strains can reduce the cost of industrial utilization of cellulase.
基金Supported by Natural Foundation of Education Department of HenanProvince (2010B530001)Research Project of Department of Sci-ence and Technology in Henan Province (102102310391)~~
文摘[Objective] The research aimed to breed the high-yield production strain of cellulase.[Method] Aspergillus niger was used as the starting strain,and a high-yield production strain of cellulase was selected after UV mutation treatment.[Result] Under the suitable condition,the strain 2(15) with the highest CMC production capacity was selected,which nearly increased 50% than that of the starting strain.[Conclusion] The research provided the foundation for its appliation in the feed production in the future.
基金supported by National Natural Science Foundation of China(21576233,21878263)Fundamental Research Funds for the Central Universities。
文摘The cellulase cocktail produced by marine Aspergillus niger exhibits a property of salt-tolerance,which is of great potential in cellulose degradation in high salt environment.In order to explain the mechanism on the salttolerance of the cellulase cocktail produced by marine A.niger,six cellulase components(AnCel6,AnCel7A,AnCel7B,AnEGL,AnBGL1 and AnBGL2)were obtained by directed expression.Studies on their enzymatic properties revealed that oneβ-glucosidase(AnBGL2)and one endoglucanase(AnEGL)exhibited an outstanding salttolerant property,and one cellobiohydrolase(AnCel7B)exhibited a certain salt-tolerant property.Subsequent study revealed that the salt-tolerant An EGL and AnCel7B endowed the cellulase cocktail with stronger salttolerant property,while the salt-tolerant An BGL2 had no positive effect.Moreover,after overexpression of AnCel6,AnCel7A,AnCel7B and AnEGL,the activity of cellulase cocktail increased by 80%,70%,63%and 68%,respectively.However,the activity of cellulase cocktail was not improved after overexpression of AnBGL1 and AnBGL2.After mixed-strain fermentation with cellobiohydrolase recombinants(cel6 a,cel7a and cel7b recombinants)and endoglucanase recombinant(egl recombinant),the the activity of cellulase cocktail increased by 114%,102%and91%,respectively.
文摘[ Objective] To determine the best culture time and inducer for the biosynthesis of cellulase by Trichoderma vivide and thus provide the conditions for its practical application. [ Method] Within the 7 d after the inoculation of Trichoderma vivide ZJ strain, the cultures were collected once every day, and the enzyme yield was respectively determined by 3,5-dinitresalicylic acid assay. The Trichodernm vivide ZJ strain was inoculated into basal medium added by different types of carbon sources or nitrogen sources, and the growth of Trichoderma viride was observed. And the mycalium weight as well as the yield of CMCase enzyme after different culture time was determined. [Result] The optimal culture time for Trichoderma viride ZJ strain was 72-96 h; it grew rapidly in the medium added by monosaccharide or disaccharide as carbon sources, and the production of CMCase enzyme reached a peak after 3 -4 d post inoculation. Cellulose powder was the best carbon inducer. The compound nitrogen source composed of 1 g/L ammonium sulfate and 2 g/L yeast extract was the most suitable for the growth of ZJ strain and produced the highest enzyme activity. [ Condusion] The largest enzyme yield should be obtained after 3-4 d post the inoculation of Trichoderma viride ZJ strain. With cellulose powder as a carbon source and the complex substance composed of ammonium sulfate and yeast extract as a nitrogen source, Trichoderma viride has the highest enzyme activity.
文摘Locoweed is a poisonous plant wildly distributed in most areas of the world,which causes livestock poisoning or death with serious economic loss.The Astragalus strictus belongs to a species of Iocoweed.It is mainly distributed in Tibet of China and is a serious hazard to the local livestock industry.The objective of this study is extracting and purifying condition of Swainsonine from Astragalus strictus with the cellulase extraction method.An optimum extracting technology of SW from Astragalus strictus was investigated through the orthogonal experiment under the cellulose assistance conditions,and then the content of swainsonine was analyzed with gas chromatography (GC) method.The optimized extraction conditions were as follow:The crushed mesh is 40; solid-liquid ratio is 1∶40 (g/ml); enzyme dosage is 3.5%; enzymatic time is 3 h.Under the above conditions,the extraction percentage of the swainsonine was 0.003 941%.The conditions for extracting swainsonine with cellulase extraction method are mild,it is easy to utilize industrial production.It is benefit for producing swainsonine from Astragalus strictus.
基金the National Natural Science Foundation of China(No.597361 30 )
文摘A seed is the carrier of life,and research on the heat and mass transfer of a seed has already stridden toward the level of microcosm,such as cell protoplasm,cell organism,and molecular membrane.By means of a transmission electron microscope,the authors of this paper observed the microstructure of cotyledon tissue slices of the Chinese cabbage seed with a moisture content of 13% (on dry basis) and that with a moisture content of 4.3% (on dry basis) for drying 2 h at 45 ℃.The compared result was that only wrinkles had been discovered on the cell walls of the seed dried for 2 h,without any significant change for other organelles.Study on the enzyme activity shows that after a germination for 48 h,the relative activity of α amylase of the Chinese cabbage seed dried for 2 h at 45 ℃,decreased by 5.8%,whereas that of the seed dried 2 h at a temperature of 67 ℃ decreased by 30.1%.This work shows that the drying factors have greatly influence on the seed microstructure,enzyme activity,which is directly positive to seed viability.Combined with the analysis of the critical safe drying temperature of the vegetable seed,it can be concluded that enzyme activity is also the function of the drying temperature,the moisture content and the drying time.
文摘[Objective] The aim was to study the effect of mercury stress on seed germination and seedlings growth.[Method]using Zhengzhou 9023 as the experimental material and cultured in water,to study the effect of the germinating rate,seedling height,root length,seedling's fresh weight,the activities of peroxidase(POD)and amylase in leaf,root and germinating embryo at different concentrations of Hg2+(0.025,0.050,0.100,0.200,0.300,0.400,0.500 mmol/L).[Result]Low concentrations of Hg2+(≤ 0.10 mmol/L)have little effect on seed germination,seedling height,root length and fresh weight;high concentrations of Hg2+( 0.10 mmol/L)have significantly inhibited seed germination and seedling growth.Low concentration of Hg2+(≥ 0.025 mmol/L)could increase POD activity and inhibit the amylase activity significantly,and the effects have increased with the increasing of Hg2+ concentrations.[Conclusion]Hg2+ stress could change the activities of POD and amylase in leaf,root and germinating embryo,influence the energy and substrate supply which was required for normal metabolism of lipid oxidation,and inhibit seedling growth ultimately.
文摘Macroamylasemia is a condition of elevated serum amylase levels in which normal serum amylase form a complex with high molecular weight proteins such as immunoglobulins. This is a case report on a patient with macroamylasemia following acute asthmatic bronchitis. A 5-year-old male with cerebral palsy and developmental retardation was admitted to our hospital because of high fever and severe cough. Treatment of the respiratory symptoms provided symptomatic improvement, but the serum amylase levels became suddenly elevated. Although acute pancreatitis associated with respiratory infection was initially suspected, a predominant salivary isoamylase, normal serum lipase level, low urine amylase level, and low amylase-creatinine clearance ratio (ACCR) (0.58%) indicated macroamylasemia. The serum amylase level decreased, and the ACCR increased within normal range 2 weeks after discharge. Both of these indicators have been within normal range over the past year. Transient macroamylasemia can be misdiagnosed as acute pancreatitis, especially in a severely multiple-handicapped child who is unable to complain. The ACCR is useful in the diagnosis of macroamylasemia.
文摘Starch degradation in cells is closely associated with cereal seed germination, photosynthesis in leaves, carbohydrate storage in tuber and tuberous roots, and fleshy fruit development. Based on previously reported in vitro assays, β amylase is considered as one of the key enzymes catalyzing starch breakdown, but up to date its role in starch breakdown in living cells remains unclear because the enzyme was shown often extrachloroplastic in living cells. Recently we have shown for the first time that β_amylase is predominantly immuno_localized to plastids in living cells of developing apple fruit. But it remains to know whether this model of β_amylase compartmentation is more widespread in plant living cells. The present experiment, conducted in tuberous root of sweet potato ( Ipomea batatas Lam. cv. Xushu 18) and via immunogold electron_microscopy technique, showed that β amylase visualized by gold particles was predominantly localized in plastids especially at periphery of starch granules, but the gold particles were scarcely found in other subcellular compartments, indicating that the enzyme is subcellularly compartmented in the same zone as its starch substrates. The density of gold particles (β amylase) in plastids was increasing during growing season, but the predominantly plastid_distributed pattern of β amylase in cells was shown unchanged throughout the tuberous root development. These data prove that the enzyme is compartmented in its functional sites, and so provide evidence to support the possible widespread biological function of the enzyme in catalyzing starch breakdown in plant living cells or at least in living cells of plant storage organs.
基金supported by the National Key R&D Program of China (2017YFD0502102)the National Technology Leader “Ten Thousand People Plan” of China (201502510410040)the National Key Technology R&D Program of China during the 12th Five-year Plan period of China (2011BAD17B02)
文摘This study assessed the effects of lactic acid bacteria(LAB), cellulase, cellulase-producing Bacillus pumilus and their combinations on the fermentation characteristics, chemical composition, bacterial community and in vitro digestibility of alfalfa silage. A completely randomized design involving a 8(silage additives)×3 or 2(silage days) factorial arrangement of treatments was adopted in the present study. The 8 silage additive treatments were: untreated alfalfa(control); two commercial additives(GFJ and Chikuso-1); an originally selected LAB(Lactobacillus plantarum a214) isolated from alfalfa silage; a cellulase-producing Bacillus(CB) isolated from fresh alfalfa; cellulase(C); and the combined additives(a214+C and a214+CB). Silage fermentation characteristics, chemical composition and microorganism populations were analysed after 30, 60 and 65 days(60 days followed by exposure to air for five additional days). In vitro digestibility was analysed for 30 and 60 days. Compared with the other treatments, selected LAB a214, a214 combined with either C or CB, and Chikuso-1 had the decreased(P<0.001) pH and increased(P<0.001) lactic acid concentrations during the ensiling process, and there were no differences(P>0.05) among them. Fiber degradation was not significant(P≥0.054) in any C or CB treatments. The a214 treatment showed the highest(P=0.009) in vitro digestibility of dry matter(595.0 g kg–1DM) after ensiling and the highest abundance of Lactobacillus(69.42 and 79.81%, respectively) on days 60 and 65, compared to all of other treatments. Overall, the silage quality of alfalfa was improved with the addition of a214, which indicates its potential as an alfalfa silage inoculant.
文摘The changes in the activity of amylase and amylase-isoenzyme and the degradation of starch and pigment of tobacco leaf during flue-curing were studied by using the electric- heated flue-curing barn designed and made by the Henan Agricultural University. The temperature and humidity of the barn were controlled automatically. The results indicated that starch in tobacco leaf decreased rapidly and leveled off after 48 h of curring, in the meantime, the content of soluble sugar increased accordingly and reached a peak at the stage of color-fixing. Both of them had a rapid-changing stage in the first 36 hours of yellowing. The changes of starch and soluble sugar contents had highly significant negative-correlation at 1 % level (rNC89 = -0.8962**, rYY85 = -0.9704**). The activity of amylase increased with the proceeding of curing and reached a peak after 36 hours of curing, then decreased. But the activity of amylase kept at a high level when the humidity of curing-environment was very low, even if the tobacco leaf had been dried. The rapid degradation of starch showed a significantly negative correlation with the increase of activity of amylase at 5 % level (rNC89 = -0.8495*, rYY85 = -0.7839*). The degradation of starch and pigment had the same regulation and had highly significant correlation at 1 % level (rNC89= 0.9649**, rYY85= 0.9428**). There were mainly three amylase-isoenzyme bands -A, B, C respectively, in tobacco leaf during flue curing. They were identified as α-AMY, β-AMY, R-AMY, and the activity of β-AMY was the highest. The changes in amylase activity and contents of starch and pigment were affected by the tobacco leaf moisture and environmental humidity during curing.