We studied in detail the mean micro fibril angle and the width of cellulose crystals from the pith to the bark of a 15-year-old Maidenhair tree(Ginkgo biloba L.). The orientation of cellulose micro fibrils with resp...We studied in detail the mean micro fibril angle and the width of cellulose crystals from the pith to the bark of a 15-year-old Maidenhair tree(Ginkgo biloba L.). The orientation of cellulose micro fibrils with respect to the cell axis and the width and length of cellulose crystallites were determined using Xray diffraction. Raman microscopy was used to compare the lignin distribution in the cell wall of normal/opposite and compression wood, which was found near the pith. Ginkgo biloba showed a relatively large mean micro fibril angle,varying between 19° and 39° in the S2 layer, and the average width of cellulose crystallites was 3.1–3.2 nm. Mild compression wood without any intercellular spaces or helical cavities was observed near the pith. Slit-like bordered pit openings and a heavily lignified S2 L layer con firmed the presence of compression wood. Ginkgo biloba showed typical features present in the juvenile wood of conifers. The micro fibril angle remained large over the 14 annual rings. The entire stem disc,with a diameter of 18 cm, was considered to consist of juvenile wood. The properties of juvenile and compression wood as well as the cellulose orientation and crystalline width indicate that the wood formation of G. biloba is similar to that of modern conifers.展开更多
Ethyl-cyanoethyl cellulose ((E-CE)C)/styrene solution could form anisotropic system when the concentration was high enough. The (E-CE)C/polystyrene(PS)multiphase polymer could be obtained by radical polymerization of ...Ethyl-cyanoethyl cellulose ((E-CE)C)/styrene solution could form anisotropic system when the concentration was high enough. The (E-CE)C/polystyrene(PS)multiphase polymer could be obtained by radical polymerization of the styrene in the solution. The (E-CE)C/PS multiphase polymer maintained both the crystalline structure of the (E-CE)C and the amorphous structure of the PS. In the multiphase polymer produced from the isotropic solution, however, the (E-CE)C formed spherulites and spread in the PS amorphous phase. While, in the multiphase polymer produced from the anisotropic solution, the (E-CE)formed cylinderic crystalline aggregates. Moreover, the ordered lamellar texture was also observed in the multiphase polymer produced from the anisotropic solution.展开更多
Bamboo shoot shell(BSS),a by-product from bamboo shoot processing industries,is a natural resource of cellulose. In this study,high-pressure homogenization assisted with acidolysis treatment was employed to produce ...Bamboo shoot shell(BSS),a by-product from bamboo shoot processing industries,is a natural resource of cellulose. In this study,high-pressure homogenization assisted with acidolysis treatment was employed to produce BSS cellulose nanofiber(CNF),and the structure was characterized by powder X-ray diffraction(XRD),Fourier-transform infrared(FT-IR) spectroscopy,atomic force microscopy(AFM),high resolution transmission electron microscopy(HTTEM),thermogravimetric analysis(TGA),and ^13 C nuclear magnetic resonance(NMR). Moreover,the structure and properties of CNF were compared with those of BSS insoluble dietary fiber(IDF). The results showed that CNF was in the form of a grid-like micro fiber,and its particle size was obviously reduced,while the crystallinity,thermal stability and solubility were increased. The results indicated that high-pressure homogenization assisted with acidolysis treatment was an effective method to prepare the BSS CNF,which could be a promising biopolymer reinforced material.展开更多
基金the National Natural Science Foundation (31370562) for financial support
文摘We studied in detail the mean micro fibril angle and the width of cellulose crystals from the pith to the bark of a 15-year-old Maidenhair tree(Ginkgo biloba L.). The orientation of cellulose micro fibrils with respect to the cell axis and the width and length of cellulose crystallites were determined using Xray diffraction. Raman microscopy was used to compare the lignin distribution in the cell wall of normal/opposite and compression wood, which was found near the pith. Ginkgo biloba showed a relatively large mean micro fibril angle,varying between 19° and 39° in the S2 layer, and the average width of cellulose crystallites was 3.1–3.2 nm. Mild compression wood without any intercellular spaces or helical cavities was observed near the pith. Slit-like bordered pit openings and a heavily lignified S2 L layer con firmed the presence of compression wood. Ginkgo biloba showed typical features present in the juvenile wood of conifers. The micro fibril angle remained large over the 14 annual rings. The entire stem disc,with a diameter of 18 cm, was considered to consist of juvenile wood. The properties of juvenile and compression wood as well as the cellulose orientation and crystalline width indicate that the wood formation of G. biloba is similar to that of modern conifers.
基金This work was supported by the Chinese Academy of Sciences and the Science Fund of the Guangdong Committee of Science and Technology.
文摘Ethyl-cyanoethyl cellulose ((E-CE)C)/styrene solution could form anisotropic system when the concentration was high enough. The (E-CE)C/polystyrene(PS)multiphase polymer could be obtained by radical polymerization of the styrene in the solution. The (E-CE)C/PS multiphase polymer maintained both the crystalline structure of the (E-CE)C and the amorphous structure of the PS. In the multiphase polymer produced from the isotropic solution, however, the (E-CE)C formed spherulites and spread in the PS amorphous phase. While, in the multiphase polymer produced from the anisotropic solution, the (E-CE)formed cylinderic crystalline aggregates. Moreover, the ordered lamellar texture was also observed in the multiphase polymer produced from the anisotropic solution.
文摘Bamboo shoot shell(BSS),a by-product from bamboo shoot processing industries,is a natural resource of cellulose. In this study,high-pressure homogenization assisted with acidolysis treatment was employed to produce BSS cellulose nanofiber(CNF),and the structure was characterized by powder X-ray diffraction(XRD),Fourier-transform infrared(FT-IR) spectroscopy,atomic force microscopy(AFM),high resolution transmission electron microscopy(HTTEM),thermogravimetric analysis(TGA),and ^13 C nuclear magnetic resonance(NMR). Moreover,the structure and properties of CNF were compared with those of BSS insoluble dietary fiber(IDF). The results showed that CNF was in the form of a grid-like micro fiber,and its particle size was obviously reduced,while the crystallinity,thermal stability and solubility were increased. The results indicated that high-pressure homogenization assisted with acidolysis treatment was an effective method to prepare the BSS CNF,which could be a promising biopolymer reinforced material.