期刊文献+
共找到1,071篇文章
< 1 2 54 >
每页显示 20 50 100
Insight into the ammonia torrefaction and pyrolysis system of cellulose:Unraveling the evolution of chemical structure and nitrogen migration mechanism 被引量:1
1
作者 Shanjian Liu An Zhao +3 位作者 Jia Liu Mengqian Yin Fupeng Huang Dongmei Bi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期135-147,I0005,共14页
This study aimed to investigate the mechanism of nitrogen doping,migration,and conversion during ammonia torrefaction and also explore the evolution law of the chemical structure of cellulose.The results showed that t... This study aimed to investigate the mechanism of nitrogen doping,migration,and conversion during ammonia torrefaction and also explore the evolution law of the chemical structure of cellulose.The results showed that the ammonia torrefaction pretreatment could significantly optimize the distribution of nitrogen and oxygen elements in cellulose.The carbon skeleton first captured the active nitrogenous radicals to form-NHn-N,and pyridine-N and pyrrole-N originated from the conversion of-NHn-N.The existence of C=O played a major role in the immobilization of nitrogen.The nitrogen in bio-oil exists mainly in the form of five-and six-membered heterocycles.The correlation analysis showed that the main precursors for the formation of nitrogenous heterocyclic compounds were five-membered Oheterocyclic compounds.Finally,the product distribution characteristics in the torrefaction-pyrolysis systems were summarized,and the nitrogen doping and conversion mechanisms were proposed.This study expanded the boundaries of cellulose pretreatment and the production of high-value chemicals. 展开更多
关键词 Ammonia torrefaction cellulose Nitrogenous compounds Structure evolution Nitrogen migration
下载PDF
Recent Research Progress of Paper-Based Supercapacitors Based on Cellulose 被引量:1
2
作者 Chuanyin Xiong Tianxu Wang +2 位作者 Jing Han zhao Zhang Yonghao Ni 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期345-373,共29页
In recent years,paper-based functional materials have received extensive attention in the field of energy storage due to their advantages of rich and adjustable porous network structure and good flexibility.As an impo... In recent years,paper-based functional materials have received extensive attention in the field of energy storage due to their advantages of rich and adjustable porous network structure and good flexibility.As an important energy storage device,paper-based supercapacitors have important application prospects in many fields and have also received extensive attention from researchers in recent years.At present,researchers have modified and regulated paper-based materials by different means such as structural design and material composition to enhance their electrochemical storage capacity.The development of paper-based supercapacitors provides an important direction for the development of green and sustainable energy.Therefore,it is of great significance to summarize the relevant work of paper-based supercapacitors for their rapid development and application.In this review,the recent research progress of paper-based supercapacitors based on cellulose was summarized in terms of various cellulose-based composites,preparation skills,and electrochemical performance.Finally,some opinions on the problems in the development of this field and the future development trend were proposed.It is hoped that this review can provide valuable references and ideas for the rapid development of paper-based energy storage devices. 展开更多
关键词 cellulose electrochemical performance FLEXIBILITY paper-based supercapacitor porous
下载PDF
Reaction pathways and selectivity in the chemo-catalytic conversion of cellulose and its derivatives to ethylene glycol:A review
3
作者 Yao Li Yuchun Zhang +2 位作者 Zhiyu Li Huiyan Zhang Peng Fu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期310-331,共22页
Biomass-to-ethylene glycol is an effective means to achieve high-value utilisation of cellulose but is hindered by low conversion efficiency and poor catalyst activity and stability.Glucose and cellobiose are derivati... Biomass-to-ethylene glycol is an effective means to achieve high-value utilisation of cellulose but is hindered by low conversion efficiency and poor catalyst activity and stability.Glucose and cellobiose are derivatives of cellulose conversion to ethylene glycol,and it is found that studying the reaction process of both can help to understand the reaction mechanism of cellulose.It is desirable to develop a reusable,highly active catalyst to convert cellulose into ethylene glycol.This ideal catalyst might have one or more active sites described the conversion steps above.Here,we discuss the catalyst development of celluloseto-ethylene glycol,including tungsten,tin,lanthanide,and other transition metal catalysts,and special attention is given to the reaction mechanism and kinetics for preparing ethylene glycol from cellulose,and the economic advantages of biomass-to-ethylene glycol are briefly introduced.The insights given in this review will facilitate further development of efficient catalysts,for addressing the global energy crisis and climate change related to the use of fossil fuels. 展开更多
关键词 Ethylene glycol cellulose Catalyst Retro-aldol condensation HYDROLYSIS Kinetics
下载PDF
Nano-alumina@cellulose-coated separators with the reinforcedconcrete-like structure for high-safety lithium-ion batteries
4
作者 Zhihao Yang Li Chen +5 位作者 Jian Xue Miaomiao Su Fangdan Zhang Liangxin Ding Suqing Wang Haihui Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期83-93,共11页
Separators play a critical role in the safety and performance of lithium-ion batteries.However,commercial polyolefin separators are limited by their poor affinity with electrolytes and low melting points.In this work,... Separators play a critical role in the safety and performance of lithium-ion batteries.However,commercial polyolefin separators are limited by their poor affinity with electrolytes and low melting points.In this work,we constructed a reinforced-concrete-like structure by homogeneously dispersing nano-Al_(2)O_(3) and cellulose on the separators to improve their stability and performance.In this reinforcedconcrete-like structure,the cellulose is a reinforcing mesh,and the nano-Al_(2)O_(3) acts as concrete to support the separator.After constructing the reinforced-concrete-like structure,the separators exhibit good stability even at 200℃(thermal shrinkage of 0.3%),enhanced tensile strain(tensile stress of 133.4 MPa and tensile strains of 62%),and better electrolyte wettability(a contact angle of 6.5°).Combining these advantages,the cells with nano-Al_(2)O_(3)@cellulose-coated separators exhibit stable cycling performance and good rate performance.Therefore,the construction of the reinforced-concretelike structure is a promising technology to promote the application of lithium-ion batteries in extreme environments. 展开更多
关键词 Alumina Nanomaterials Lithium-ion batteries Membranes cellulose Reinforced-concrete-like structure
下载PDF
Phosphorylated cellulose nanofibers establishing reliable ion-sieving barriers for durable lithium-sulfur batteries
5
作者 Zihao Li Pengsen Qian +3 位作者 Hongyang Li He Xiao Jun Chen Gaoran Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期619-628,共10页
The shuttle effect is among the most characteristic and formidable challenges in the pursuit of high-performance lithium-sulfur(Li-S)batteries.Herein,phosphorylated cellulose nanofibers(pCNF)are intentionally engineer... The shuttle effect is among the most characteristic and formidable challenges in the pursuit of high-performance lithium-sulfur(Li-S)batteries.Herein,phosphorylated cellulose nanofibers(pCNF)are intentionally engineered to establish an ion-sieving barrier against polysulfide shuttling and thereby improve battery performance.The phosphorylation,involving the grafting of phosphate groups onto the cellulose backbone,imparts an exceptional electronegativity that repels the polysulfide anions from penetrating through the separator.Moreover,the electrolyte wettability and Li^(+)transfer can be significantly promoted by the polar nature of pCNF and the facile Li^(+)disassociation.As such,rational ion management is realized,contributing to enhanced reversibility in both sulfur and lithium electrochemistry.As a result,Li-S cells equipped with the self-standing pCNF separator demonstrate outstanding long-term cyclability with a minimum fading rate of 0.013%per cycle over 1000 cycles at 1 C,and a decent areal capacity of 5.37 mA h cm^(-2) even under elevated sulfur loading of 5.0 mg cm^(-2) and limited electrolyte of 6.0 mL g^(-1).This work provides a facile and effective pathway toward the well-tamed shuttle effect and highly durable Li-S batteries. 展开更多
关键词 Lithium-sulfur batteries cellulose Phosphorylation Ion-sieving Shuttle effect
下载PDF
Recent Progress in Improving Rate Performance of Cellulose-Derived Carbon Materials for Sodium-Ion Batteries
6
作者 Fujuan Wang Tianyun Zhang +2 位作者 Tian Zhang Tianqi He Fen Ran 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期102-147,共46页
Cellulose-derived carbon is regarded as one of the most promising candidates for high-performance anode materials in sodium-ion batteries;however,its poor rate performance at higher current density remains a challenge... Cellulose-derived carbon is regarded as one of the most promising candidates for high-performance anode materials in sodium-ion batteries;however,its poor rate performance at higher current density remains a challenge to achieve high power density sodium-ion batteries.The present review comprehensively elucidates the structural characteristics of cellulose-based materials and cellulose-derived carbon materials,explores the limitations in enhancing rate performance arising from ion diffusion and electronic transfer at the level of cellulose-derived carbon materials,and proposes corresponding strategies to improve rate performance targeted at various precursors of cellulose-based materials.This review also presents an update on recent progress in cellulose-based materials and cellulose-derived carbon materials,with particular focuses on their molecular,crystalline,and aggregation structures.Furthermore,the relationship between storage sodium and rate performance the carbon materials is elucidated through theoretical calculations and characterization analyses.Finally,future perspectives regarding challenges and opportunities in the research field of cellulose-derived carbon anodes are briefly highlighted. 展开更多
关键词 cellulose Hard carbon Anode materials Rate performance Sodium-ion batteries
下载PDF
CAOSA-extracted lignin improves enzymatic hydrolysis of cellulose
7
作者 Sen Ma Zheng Li +5 位作者 Jonathan Sperry Xing Tang Yong Sun Lu Lin Jian Liu Xianhai Zeng 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第7期1101-1111,共11页
The conversion of biomass into sugar platform compounds is very important for the biorefinery industry.Pretreatment is essential to the biomass of the sugar platform,however,the lignin obtained by pretreatment,as a ke... The conversion of biomass into sugar platform compounds is very important for the biorefinery industry.Pretreatment is essential to the biomass of the sugar platform,however,the lignin obtained by pretreatment,as a key part of lignocellulose,generally has a passive effect on the enzymatic hydrolysis of cellulose into sugars.In this study,p-TsOH(p-toluenesulfonic acid),DES(Deep eutectic solvent)and CAOSA(cooking with active oxygen and solid alkali)pretreatment ways were used to fraction lignin from bamboo biomass.After CAOSA treatment,the hydrolysis efficiency of the pulp was 95.57%.Moreover,the effect of different treatment methods on lignin properties was studied and the promotion effect of lignin was investigated by adding it to the cellulose enzymatic hydrolysis system.In this work,the results showed that CAOSA-extracted lignin with lower D(1.31-1.25)had a better adsorption effect on the enzyme protein.p-TsOH-extracted lignin with a larger S/G ratio enhanced the inhibition of enzymatic hydrolysis.In addition,the presence of-COOHs in lignin could reduce its inhibitory effect on cellulose saccharification. 展开更多
关键词 Biomass pretreatment CAOSA cellulose hydrolysis LIGNIN ENZYME
下载PDF
Sustainable, thermoplastic and hydrophobic coating from natural cellulose and cinnamon to fabricate eco-friendly catering packaging
8
作者 Rumeng Xu Chunchun Yin +4 位作者 Jingxuan You Jinming Zhang Qinyong Mi Jin Wu Jun Zhang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第5期927-936,共10页
Non-degradable polymers cause serious environmental pollution problem,such as the widely-used while unrecyclable coatings which significantly affect the overall degradation performance of products.It is imperative and ... Non-degradable polymers cause serious environmental pollution problem,such as the widely-used while unrecyclable coatings which significantly affect the overall degradation performance of products.It is imperative and attractive to develop biodegradable functional coatings.Herein,we proposed a novel strategy to successfully prepare biodegradable,thermoplastic and hydrophobic coatings with high transparence and biosafety by weakening the interchain interactions between cellulose chain.The natural cellulose and cinnamic acid were as raw materials.Via reducing the degree of polymerization(DP)of cellulose and regulating the degree of substitution(DS)of cinnamate moiety,the obtained cellulose cinnamate(CC)exhibited not only the thermalflow behavior but also good biodegradability,which solves the conflict between the thermoplasticity and biodegradability in cellulose-based materials.The glass transition temperature(T_(g))and thermalflow temperature(T_(f))of the CC could be adjusted in a range of 150–200℃ and 180–210℃,respectively.The CC with DS<1.2 and DP≤100 degraded more than 60%after an enzyme treatment for 7 days,and degraded more than 80%after a composting treatment for 42 days.Furthermore,CC had no toxicity to human epidermal cells even at a high concentration(0.5 mg mL^(-1)).In addition,CC could be easily fabricated into multifunctional coating with high hydrophobicity,thermal adhesion and high transparence.Therefore,after combining with cellophane and paperboard,CC coating with low DP and DS could be used to prepare fully-biodegradable heat-sealing packaging,art paper,paper cups,paper straws and food packaging boxes. 展开更多
关键词 Thermoplastic coating Bio-degradable adhesive Natural products cellulose Eco-friendly packaging
下载PDF
Leaf Morphology Genes SRL1 and RENL1 Co-Regulate Cellulose Synthesis and Affect Rice Drought Tolerance
9
作者 LIU Dan ZHAO Huibo +18 位作者 WANG Zi’an XU Jing LIU Yiting WANG Jiajia CHEN Minmin LIU Xiong ZHANG Zhihai CEN Jiangsu ZHU Li HU Jiang REN Deyong GAO Zhenyu DONG Guojun ZHANG Qiang SHEN Lan LI Qing QIAN Qian HU Songping ZHANG Guangheng 《Rice science》 SCIE CSCD 2024年第1期103-117,I0020-I0022,共18页
The morphological development of rice(Oryza sativa L.)leaves is closely related to plant architecture,physiological activities,and resistance.However,it is unclear whether there is a co-regulatory relationship between... The morphological development of rice(Oryza sativa L.)leaves is closely related to plant architecture,physiological activities,and resistance.However,it is unclear whether there is a co-regulatory relationship between the morphological development of leaves and adaptation to drought environment.In this study,a drought-sensitive,roll-enhanced,and narrow-leaf mutant(renl1)was induced from a semi-rolled leaf mutant(srl1)by ethyl methane sulfonate(EMS),which was obtained from Nipponbare(NPB)through EMS.Map-based cloning and functional validation showed that RENL1 encodes a cellulose synthase,allelic to NRL1/OsCLSD4.The RENL1 mutation resulted in reduced vascular bundles,vesicular cells,cellulose,and hemicellulose contents in cell walls,diminishing the water-holding capacity of leaves.In addition,the root system of the renl1 mutant was poorly developed and its ability to scavenge reactive oxygen species(ROS)was decreased,leading to an increase in ROS after drought stress.Meanwhile,genetic results showed that RENL1 and SRL1 synergistically regulated cell wall components.Our results revealed a theoretical basis for further elucidating the molecular regulation mechanism of cellulose on rice drought tolerance,and provided a new genetic resource for enhancing the synergistic regulation network of plant type and stress resistance,thereby realizing simultaneous improvement of multiple traits in rice. 展开更多
关键词 cellulose cell wall drought tolerance leaf morphology RICE
下载PDF
Redefining biofuels:Investigating oil palm biomass as a promising cellulose feedstock for nitrocellulose-based propellant production
10
作者 Khoirul Solehah binti Abdul Rahim Alinda binti Samsuri +4 位作者 Siti Hasnawati binti Jamal Siti Aminah binti Mohd Nor Siti Nor Ain binti Rusly Hafizah binti Ariff Nur Shazwani binti Abdul Latif 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期111-132,共22页
This review paper explores the potential of oil palm biomass as a valuable cellulose source for the production of nitrocellulose-based propellants,contributing to the green revolution and sustainable energy solutions.... This review paper explores the potential of oil palm biomass as a valuable cellulose source for the production of nitrocellulose-based propellants,contributing to the green revolution and sustainable energy solutions.It highlights the availability of the corresponding biomass in Malaysia and in line with global studies,the chemical compositions,as well as a brief description of current technologies for converting biomass of oil palm into value added products specifically cellulose.Steps to achieve maximum utilization of biomass from oil palm industry for cellulose production and prospective source for nitrocellulose-based propellant are also proposed.The methodology section outlines the pretreatment of lignocellulosic fibres,cellulose extraction,and nitrocellulose production processes.Overall,the review underscores the prospective of palm oil biomass as a sustainable cellulose source for propellant manufacturing,while acknowledging the need for further research and advancements in the field. 展开更多
关键词 BIOPOLYMER cellulose nitrate Energetic materials Green technology Palm oil
下载PDF
Bacterial Cellulose/Zwitterionic Dual-network Porous Gel Polymer Electrolytes with High Ionic Conductivity
11
作者 侯朝霞 WANG Haoran QU Chenying 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期596-605,共10页
Bacterial cellulose(BC)was innovatively combined with zwitterionic copolymer acrylamide and sulfobetaine methacrylic acid ester[P(AM-co-SBMA)]to build a dual-network porous structure gel polymer electrolytes(GPEs)with... Bacterial cellulose(BC)was innovatively combined with zwitterionic copolymer acrylamide and sulfobetaine methacrylic acid ester[P(AM-co-SBMA)]to build a dual-network porous structure gel polymer electrolytes(GPEs)with high ionic conductivity.The dual network structure BC/P(AM-co-SBMA)gels were formed by a simple one-step polymerization method.The results show that ionic conductivity of BC/P(AM-co-SBMA)GPEs at the room temperature are 3.2×10^(-2) S/cm@1 M H_(2)SO_(4),4.5×10^(-2) S/cm@4 M KOH,and 3.6×10^(-2) S/cm@1 M NaCl,respectively.Using active carbon(AC)as the electrodes,BC/P(AM-co-SBMA)GPEs as both separator and electrolyte matrix,and 4 M KOH as the electrolyte,a symmetric solid supercapacitors(SSC)(AC-GPE-KOH)was assembled and testified.The specific capacitance of AC electrode is 173 F/g and remains 95.0%of the initial value after 5000 cycles and 86.2%after 10,000 cycles. 展开更多
关键词 bacterial cellulose ZWITTERION gel polymer electrolytes ionic conductivity dual-network structure
下载PDF
A Sustainable Dual Cross‑Linked Cellulose Hydrogel Electrolyte for High‑Performance Zinc‑Metal Batteries
12
作者 Haodong Zhang Xiaotang Gan +1 位作者 Yuyang Yan Jinping Zhou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期63-75,共13页
Aqueous rechargeable Zn-metal batteries(ARZBs)are considered one of the most promising candidates for grid-scale energy storage.However,their widespread commercial application is largely plagued by three major challen... Aqueous rechargeable Zn-metal batteries(ARZBs)are considered one of the most promising candidates for grid-scale energy storage.However,their widespread commercial application is largely plagued by three major challenges:The uncontrollable Zn dendrites,notorious parasitic side reactions,and sluggish Zn^(2+) ion transfer.To address these issues,we design a sustainable dual crosslinked cellulose hydrogel electrolyte,which has excellent mechanical strength to inhibit dendrite formation,high Zn^(2+) ions binding capacity to suppress side reaction,and abundant porous structure to facilitate Zn^(2+) ions migration.Consequently,the Zn||Zn cell with the hydrogel electrolyte can cycle stably for more than 400 h under a high current density of 10 mA cm^(−2).Moreover,the hydrogel electrolyte also enables the Zn||polyaniline cell to achieve high-rate and long-term cycling performance(>2000 cycles at 2000 mA g^(−1)).Remarkably,the hydrogel electrolyte is easily accessible and biodegradable,making the ARZBs attractive in terms of scalability and sustainability. 展开更多
关键词 cellulose Dual cross-linked Aqueous rechargeable Zn-metal batteries Hydrogel electrolyte
下载PDF
Novel Sustainable Cellulose Acetate Based Biosensor for Glucose Detection
13
作者 M.F.Elkady E.M.El-Sayed +2 位作者 Mahmoud Samy Omneya A.Koriem H.Shokry Hassan 《Journal of Renewable Materials》 EI CAS 2024年第2期369-380,共12页
In this study,green zinc oxide(ZnO)/polypyrrole(Ppy)/cellulose acetate(CA)film has been synthesized via solvent casting.This film was used as supporting material for glucose oxidase(GOx)to sensitize a glucose biosenso... In this study,green zinc oxide(ZnO)/polypyrrole(Ppy)/cellulose acetate(CA)film has been synthesized via solvent casting.This film was used as supporting material for glucose oxidase(GOx)to sensitize a glucose biosensor.ZnO nanoparticles have been prepared via the green route using olive leaves extract as a reductant.ZnO/Ppy nanocomposite has been synthesized by a simple in-situ chemical oxidative polymerization of pyrrole(Py)monomer using ferric chloride(FeCl3)as an oxidizing agent.The produced materials and the composite films were characterized using X-ray diffraction analysis(XRD),scanning electron microscope(SEM),Fourier transform infrared(FTIR)and thermogravimetric analysis(TGA).Glucose oxidase was successfully immobilized on the surface of the prepared film and then ZnO/Ppy/CA/GOx composite was sputtered with platinum electrode for the current determination at different initial concentrations of glucose.Current measurements proved the suitability and the high sensitivity of the constructed biosensor for the detection of glucose levels in different samples.The performance of the prepared biosensor has been assessed by measuring and comparing glucose concentrations up to 800 ppm.The results affirmed the reliability of the developed biosensor towards real samples which suggests the wide-scale application of the proposed biosensor. 展开更多
关键词 Biosensors composite films GLUCOSE POLYPYRROLE green ZnO cellulose acetate
下载PDF
Isolation of Microcrystalline Cellulose from Wood and Fabrication of Polylactic Acid(PLA)Based Green Biocomposites
14
作者 Selwin Maria Sekar Rajini Nagarajan +5 位作者 Ponsuriyaprakash Selvakumar Ismail Sikiru Oluwarotimi Kumar Krishnan Faruq Mohammad Mohammed Rafi Shaik Nadir Ayrilmis 《Journal of Renewable Materials》 EI CAS 2024年第8期1455-1474,共20页
An innovative microcrystalline cellulose(MCC)natural fibre powder-reinforced PLA biocomposite was investigated using the hand lay-up technique.The polymer matrix composite(PMC)samples were prepared by varying the weig... An innovative microcrystalline cellulose(MCC)natural fibre powder-reinforced PLA biocomposite was investigated using the hand lay-up technique.The polymer matrix composite(PMC)samples were prepared by varying the weight percentages(wt.%)of both PLA matrix and MCC reinforcement:pure PLA/100:0,90:10,80:20,70:30,60:40 and 50:50 wt.%,respectively.From the results obtained,MCC powder,with its impressive aspect ratio,proved to be an ideal reinforcement for the PLA,exhibiting exceptional mechanical properties.It was evident that the 80:20 wt.%biocomposite sample exhibited the maximum improvement in the tensile,flexural,notched impact,compressive strength and hardness by 28.85%,20.00%,91.66%,21.53%and 35.82%,respectively compared to the pure PLA sample.Similarly,during the thermogravimetric analysis(TGA),the same 80:20 wt.%biocomposite sample showed a minimum weight loss of 20%at 400℃,among others.The morphological study using Field Emission Scanning Electron Microscopy(FE-SEM)revealed that the uniform distribution of cellulose reinforcement in the PLA matrix actively improved the mechanical properties of the biocomposites,especially the optimal 80:20 wt.%sample.Importantly,it was evident that the optimal PLA/cellulose biocomposite sample could be a suitable and alternative sustainable,environmentally friendly and biodegradable material for semi/structural applications,replacing synthetic and traditional components. 展开更多
关键词 Polylactic acid micro crystalline cellulose BIOCOMPOSITE CHARACTERIZATIONS FESEM environmental pollution
下载PDF
Preparation and Characterization of Biobased Dehydroabietyl Polyethylene Glycol Glycidyl Ether-Grafted Hydroxyethyl Cellulose with High Emulsifying Property
15
作者 Zhengqing Ding Quan Yang +3 位作者 Xinyan Yan Feng Gu Xujuan Huang Zhaosheng Cai 《Journal of Renewable Materials》 EI CAS 2024年第1期103-117,共15页
Dehydroabietyl polyethylene glycol glycidyl ether-grafted hydroxyethyl cellulose(HEC)polymer surfactant(DA(EO)5GE-g-HEC)was prepared using ring-opening polymerization with biobased rosin and hydroxyethyl cellulose as ... Dehydroabietyl polyethylene glycol glycidyl ether-grafted hydroxyethyl cellulose(HEC)polymer surfactant(DA(EO)5GE-g-HEC)was prepared using ring-opening polymerization with biobased rosin and hydroxyethyl cellulose as feedstocks.Dehydroabietyl polyethylene glycol glycidyl ether(DA(EO)5GE)was formed by condensation of dehydroabietyl alcohol polyoxyethylene ether(Rosin derivative:DA(EO)5H)and epichlorohydrin.The grafting degree of DA(EO)5GE-g-HEC was manipulated by adjusting the mass ratio of HEC and DA(EO)5GE and confirmed by EA.According to the formula,when m(HEC)/m(DA(EO)2GE)was 1:1~1:5,the grafting rate of DA(EO)5GE in DA(EO)5GE-g-HEC varied from 34.43%to 38.33%.The surface activity and foam properties of DA(EO)5GE-g-HEC aqueous solution were studied.The results showed that with the increase in grafting rate,the critical micellar concentration(CMC)in aqueous solution changed from 1.28 to 0.96 g/L.The results of the thermogravimetric analysis showed that the temperature range of the main stage of mass loss of DA(EO)5GE-g-HEC was 310°C~410°C,and the thermal decomposition processes of the samples with five mass ratios were similar.An oil in water emulsion was prepared by choosing cyclohexane as the oil phase and DA(EO)5GE-g-HEC as the emulsifier.The effect of DA(EO)5GE-g-HEC mass fraction on emulsion particle size and stability was analyzed.The results suggested that when the oil-water ratio was 8:2 with 0.4%emulsifier,the emulsion droplets were the smallest in terms of particle size and were the most stable.The rheological test results showed that the apparent viscosity decreased with the increase in shear rate and showed a typical elastic gel phenomenon. 展开更多
关键词 ROSIN hydroxyethyl cellulose SURFACTANT EMULSION rheological behaviour
下载PDF
Unraveling the Rheology of Nanocellulose Aqueous Suspensions:A Comprehensive Study on Biomass-Derived Nanofibrillated Cellulose
16
作者 Mingyue Miao Fei Wang +6 位作者 Qing Li Longchen Tao Chenchen Dai Yu Liu Shujuan Han Wenshuai Chen Ping Lu 《Journal of Renewable Materials》 EI CAS 2024年第3期443-455,共13页
The rheological properties of nanocellulose aqueous suspensions play a critical role in the development of nanocellulose-based bulk materials.High-crystalline,high-aspect ratio,and slender nanofibrillated cellulose(NF... The rheological properties of nanocellulose aqueous suspensions play a critical role in the development of nanocellulose-based bulk materials.High-crystalline,high-aspect ratio,and slender nanofibrillated cellulose(NFC)were extracted from four biomass resources.The cellulose nanofibrils and nanofibril bundles formed inter-connected networks in the NFC aqueous suspensions.The storage moduli of the suspensions with different concentrations were higher than their corresponding loss moduli.As the concentration increased,the storage and loss modulus of NFC dispersion increased.When the shear rate increased to a certain value,there were differences in the changing trend of the rheological behavior of NFC aqueous suspensions derived from different biomass resources and the suspensions with different solid concentrations.NFC dispersion’s storage and loss modulus increased when the temperature rose to nearly 80℃.We hope this study can deepen the understanding of the rheological properties of NFC colloids derived from different biomass resources. 展开更多
关键词 Biomass resources nanofibrillated cellulose high-pressure homogenizer SUSPENSION rheology properties
下载PDF
Characterization and Selection of Microcrystalline Cellulose from Oil Palm Empty Fruit Bunches for Strengthening Hydrogel Films
17
作者 Susi Susi Makhmudun Ainuri +1 位作者 Wagiman Wagiman Mohammad Affan Fajar Falah 《Journal of Renewable Materials》 EI CAS 2024年第3期513-537,共25页
Microcrystalline cellulose(MCC)is one of the cellulose derivatives produced as a result of the depolymerization of a part of cellulose to achieve high crystallinity.When implemented in other polymers,high crystallinit... Microcrystalline cellulose(MCC)is one of the cellulose derivatives produced as a result of the depolymerization of a part of cellulose to achieve high crystallinity.When implemented in other polymers,high crystallinity correlates with greater strength and stiffnes,but it can reduce the water-holding capacity.The acid concentration and hydrolysis time will affect the acquisition of crystallinity and water absorption capacity,both of which have significance as properties of hydrogel filler.The study aimed to evaluate the properties and select the MCC generated from varying the proportion of hydrochloric acid(HCl)and the appropriate hydrolysis time as a filler for film hydrogel.MCC was produced by hydrolyzing cellulose of oil palm empty fruit bunches(OPEFB)with the HCl solution at varied concentrations and periods.The results show that the longer hydrolysis times and higher HCl concentrations increase crystallinity and density while lowering yield and water absorption.The extensive acid hydrolysis reduces the amorphous area significantly,allowing the depolymerization to occur and extend the crystalline area.The morphological properties of the MCC,which are smaller but compact,indicate the presence of disintegrating and diminishing structures.A 2.5 N HCl concentration and a 45-min hydrolysis time succeed in sufficient crystallinity as well as maintaining good water absorption capacity.The treatment produced MCC with absorption capacity of 4.03±0.26 g/g,swelling capacity of 5.03±0.26 g/g,loss on drying of 1.44%±0.36,bulk and tapped density of 0.27±0.031 g/cm^(3) and 0.3±0.006 g/cm^(3),respectively,with a crystallinity index of 88.89%±4.76 and a crystallite size of 4.23±0.70 nm.The MCC generated could potentially be utilized as a hydrogel film filler,since a given proportion will be able to maintain the strength of the hydrogel,not readily dissolve but absorb water significantly. 展开更多
关键词 Acid hydrolysis HYDROGEL OPEFB microcrystalline cellulose water absorption
下载PDF
Flame Retardant Material Based on Cellulose Scaffold Mineralized by Calcium Carbonate
18
作者 Jinshuo Wang Lida Xing +1 位作者 Fulong Zhang Chuanfu Liu 《Journal of Renewable Materials》 EI CAS 2024年第1期89-102,共14页
Wood-based functional materials have developed rapidly.But the flammability significantly limits its further application.To improve the flame retardancy,the balsa wood was delignified by NaClO2 solution to create a ce... Wood-based functional materials have developed rapidly.But the flammability significantly limits its further application.To improve the flame retardancy,the balsa wood was delignified by NaClO2 solution to create a cellulose scaffold,and then alternately immersed in CaCl_(2) ethanol solution and NaHCO3 aqueous solution under vacuum.The high porosity and wettability resulting from delignification benefited the following mineralization process,changing the thermal properties of balsa wood significantly.The organic-inorganic wood composite showed abundant CaCO_(3) spherical particles under scanning electron microscopy.The peak of the heat release rate of delignified balsa-CaCO_(3) was reduced by 33%compared to the native balsa,according to the cone calorimetric characterization.The flame test demonstrated that the mineralized wood was flame retardant and selfextinguish.Additionally,the mineralized wood also displayed lower thermal conductivity.This study developed a feasible way to fabricate a lightweight,fire-retardant,self-extinguishing,and heat-insulating wood composite,providing a promising route for the valuable application of cellulosic biomass. 展开更多
关键词 cellulose scaffold DELIGNIFICATION CaCO_(3) MINERALIZATION fire retardancy
下载PDF
Enhanced Dye Adsorption and Bacterial Removal of Magnetic Nanoparticle-Functionalized Bacterial Cellulose Acetate Membranes
19
作者 Heru Suryanto Daimon Syukri +7 位作者 Fredy Kurniawan Uun Yanuhar Joseph Selvi Binoj Sahrul Efendi Fajar Nusantara Jibril Maulana Nico Rahman Caesar Komarudin Komarudin 《Journal of Renewable Materials》 EI CAS 2024年第9期1605-1624,共20页
Utilizing biomass waste as a potential resource for cellulose production holds promise in mitigating environmental consequences.The current study aims to utilize pineapple biowaste extract in producing bacterial cellu... Utilizing biomass waste as a potential resource for cellulose production holds promise in mitigating environmental consequences.The current study aims to utilize pineapple biowaste extract in producing bacterial cellulose acetate-based membranes with magnetic nanoparticles(Fe_(3)O_(4)nanoparticles)through the fermentation and esterification process and explore its characteristics.The bacterial cellulose fibrillation used a high-pressure homogenization procedure,and membranes were developed incorporating 0.25,0.50,0.75,and 1.0 wt.%of Fe3O4 nanoparticles as magnetic nanoparticle for functionalization.The membrane characteristics were measured in terms of Scanning Electron Microscope,X-ray diffraction,Fourier Transform Infrared,Vibrating Sample Magnetometer,antibacterial activity,bacterial adhesion and dye adsorption studies.The results indicated that the surface morphology of membrane changes where the bacterial cellulose acetate surface looks rougher.The crystallinity index of membrane increased from 54.34%to 68.33%,and the functional groups analysis revealed that multiple peak shifts indicated alterations in membrane functional groups.Moreover,adding Fe_(3)O_(4)-NPs into membrane exhibits paramagnetic behavior,increases tensile strength to 73%,enhances activity against E.coli and S.aureus,and is successful in removing bacteria from wastewater of the river to 67.4%and increases adsorption for anionic dyes like Congo Red and Acid Orange. 展开更多
关键词 Bacterial cellulose dye adsorption Fe_(3)O_(4)nanoparticles MEMBRANE PINEAPPLE WASTE
下载PDF
The Adsorption Properties of TEMPO Oxidized Cellulose against the Mixture of Methylene Blue and Rhemazol Yellow FG
20
作者 I.Putu Mahendra Kartika Dinita 《Journal of Renewable Materials》 EI CAS 2024年第8期1369-1382,共14页
TEMPO/NaOCl/NaBr treatment significantly increased the number of negative charges on the cellulose surface.Two concentrations of NaOCl,5 and 30 mmol/g of cellulose,were used in this study.The number of carboxyl groups... TEMPO/NaOCl/NaBr treatment significantly increased the number of negative charges on the cellulose surface.Two concentrations of NaOCl,5 and 30 mmol/g of cellulose,were used in this study.The number of carboxyl groups in the two cellulosic samples oxidized using TEMPO/NaOCl/NaBr was 0.5160 and 1.8461 mmol/g of cellulose,respectively.The oxidized cellulose samples treated with 5 and 30 mmol/g NaOCl exhibited higher crystallinity,at 81.15%and 80.14%,respectively,compared to untreated cellulose,which had a crystallinity of 75.95%.The pH effect indicated that the highest adsorption capacity for methylene blue was achieved under alkaline conditions(pH 9),while the highest adsorption capacity for rhemazol yellow FG was achieved under acidic conditions.The kinetic model of TEMPO-oxidized cellulose for methylene blue and rhemazol yellow FG conformed to the pseudo-second-order model.The initial concentration parameter revealed that the isotherm model for the adsorption of methylene blue and rhemazol yellow FG by TEMPO-oxidized cellulose conformed to the Langmuir model.The dye removal efficiencies for methylene blue and rhemazol yellow FG using TEMPOoxidized cellulose(30 mmol/g)were approximately 80.17%and 59.52%,respectively.These results demonstrate that TEMPO/NaOCl/NaBr-oxidized samples can effectively separate cationic and anionic dye mixtures.Furthermore,the use of TEMPO-oxidized cellulose showed good regeneration capability,maintaining more than 95%of its adsorption capacity after 8 cycles. 展开更多
关键词 cellulose TEMPO oxidation cationic and anionic dyes dye separation
下载PDF
上一页 1 2 54 下一页 到第
使用帮助 返回顶部