The objective of this study was to evaluate the effects of adding formic acid and corn flour supplementation to banana pseudostem silages on the nutritional quality of these silages,growth,digestion,rumen fermentation...The objective of this study was to evaluate the effects of adding formic acid and corn flour supplementation to banana pseudostem silages on the nutritional quality of these silages,growth,digestion,rumen fermentation and cellulolytic bacterial community of Nubian black goats fed these silages.Banana pseudostem silage was prepared either conventionally without any additives(CON)or mixed with 0.6% formic acid(F),10% corn flour(C),or both(F+C).Four experimental diets containing 40% of the corresponding silages were designed with roughage to concentrate ratio of 50:50(dry matter(DM)basis).A total of 48 Nubian black castrated goats(body weight(BW),(22.64±1.82)kg;4-mon-old)were randomized into one of the four treatment groups with 12 replicates of one castrated goat per replicate for each treatment in a completely randomized design.Each group was fed on one of the four experimental diets for 40 days.A factorial arrangement of treatments of 2(formic acid levels:0 and 0.6%)×2(corn flour:0 and 10%)was adopted.Formic acid supplementation increased(P<0.05)average daily gain,as well as lactic acid,propionate and butyric acid and water-soluble carbohydrate concentrations,but decreased(P<0.05)the feed conversion rate,pH value,acetate/propionate ratio,and butyric acid concentration relative to the CON group.Corn flour supplementation increased(P<0.05)the apparent digestibility of crude protein,neutral detergent fiber,and non-fibrous carbohydrate and Fibrobacter succinogenes,Ruminococcus albus,and Butyrivibrio fibrisolvens populations,but decreased(P<0.05)the Ruminococcus flavefaciens population relative to the CON group.There were no F×C treatment interactions(P>0.05)for any of the other indices except for the apparent digestibility of non-fibrous carbohydrate(NFC)(P<0.05).The results demonstrated that adding 0.6% formic acid and 10% corn flour supplementation to banana pseudostem silages improved the nutritional quality of these silages and enhanced the growth performance of Nubian black castrated goats by improving apparent nutrient digestibility,and regulating ruminal fermentation and bacteria populations.展开更多
Background: Original rumen digesta, rumen liquid and solid fractions have been frequently used to assess the rumen bacterial community. However, bacterial profiles in rumen original digesta, liquid and solid fraction...Background: Original rumen digesta, rumen liquid and solid fractions have been frequently used to assess the rumen bacterial community. However, bacterial profiles in rumen original digesta, liquid and solid fractions vary from each other and need to be better established.Methods: To compare bacterial profiles in each fraction, samples of rumen digesta from six cows fed either a high fiber diet(HFD) or a high energy diet(HED) were collected via rumen fistulas. Rumen digesta was then squeezed through four layers of cheesecloth to separate liquid and solid fractions. The bacterial profiles of rumen original digesta, liquid and solid fractions were analyzed with High-throughput sequencing technique.Results: Rumen bacterial diversity was mainly affected by diet and individual cow(P 〉 0.05) rather than rumen fraction. Bias distributed bacteria were observed in solid and liquid fractions of rumen content using Venn diagram and LEf Se analysis. Fifteen out of 16 detected biomarkers(using LEf Se analysis) were found in liquid fraction, and these 15 biomarkers contributed the most to the bacterial differences among rumen content fractions.Conclusions: Similar results were found when using samples of original rumen digesta, rumen liquid or solid fractions to assess diversity of rumen bacteria; however, more attention should be draw onto bias distributed bacteria in different ruminal fractions, especially when liquid fraction has been used as a representative sample for rumen bacterial study.展开更多
Studies on the bacterial predation rate by rumen protozoa were carried out under laboratory conditions using a technique of fluorescence-labeled bacteria (FLB). Four Xuhuai goats were used in this experiment to obta...Studies on the bacterial predation rate by rumen protozoa were carried out under laboratory conditions using a technique of fluorescence-labeled bacteria (FLB). Four Xuhuai goats were used in this experiment to obtain rumen protozoa and bacteria. Two groups were designed as follows: One group was the whole bacteria which were labeled using fluorescence through removing free bacteria from rumen fluid (WFLB); the other group was the bacteria which were labeled using fluorescence without removing free bacteria from rumen fluid (FLB). The result indicated that the bacterial predation rates of rumen protozoa was 398.4 cells/(cell h) for the group WFLB, 230.4 cells/(cell h) for the group FLB, when the corresponding values expressed as bacteria-N, they were 2.15 pg N/(cell h) for the group WFLB, and 1.24 pg N/(cell h) for the group FLB, respectively. Extrapolating the assimilation quantity of nitrogen by ciliates on bacteria of Xuhuai goat, there were 103.2 mg N/(d capita) for the group WFLB, and 59.5 mg N/(d capita) for the group FLB, respectively. It was estimated that protein losses due to microbial recycling were 0.645 g pro/(d capita) for the group WFLB and 0.372 g pro/(d capita) for the group FLB, respectively. In addition, the fluorescence-labeled technique would be a potential assay for the determination of bacterial predation rate by rumen protozoa.展开更多
Rumen of cattle harbors many microorganisms responsible for bioconversion of nutrients into a source of energy for the animals. In recent years many rumen microbes have been isolated and characterized by sequence anal...Rumen of cattle harbors many microorganisms responsible for bioconversion of nutrients into a source of energy for the animals. In recent years many rumen microbes have been isolated and characterized by sequence analysis of 16S ribosomal RNA gene. Some of the microbes have also been recommended as feed additives for improving the overall growth or production of animals. Rumen bacteria which have potential application in animal feed stuffs were isolated and characterized in this experiment. Isolation was carried out from the rumen of cattle (Bos taurus) using techniques of serial dilutions and repeated tubing of the selectively enriched microbial cultures by using the specific media for rumen bacteria. All the isolates were then screened for in vitro gas production and cellulase enzyme activity and four superior isolates were selected and characterized. There were 18.00% to 23.00% increases in gas production on addition of these isolates to the rumen fluid of cattle and there was better cellulase enzyme activity. Two isolates were identified as Butyrivibrio fibrisolvens, one isolate as Streptococcus species and one isolate as Clostridium aminophilum. This indicated that, these isolates are superior and may have potential to be used as microbial feed additive in ruminants if fed in higher quantity.展开更多
Background Dietary supplements based on tannin extracts or essential oil compounds(EOC)have been repeatedly reported as a promising feeding strategy to reduce the environmental impact of ruminant husbandry.A previous ...Background Dietary supplements based on tannin extracts or essential oil compounds(EOC)have been repeatedly reported as a promising feeding strategy to reduce the environmental impact of ruminant husbandry.A previous batch culture screening of various supplements identified selected mixtures with an enhanced potential to mitigate ruminal methane and ammonia formation.Among these,Q-2(named after quebracho extract and EOC blend 2,composed of carvacrol,thymol,and eugenol)and C-10(chestnut extract and EOC blend 10,consisting of oregano and thyme essential oils and limonene)have been investigated in detail in the present study with the semi-continuous rumen simulation technique(Rusitec)in three independent runs.For this purpose,Q-2 and C-10,dosed according to the previous study,were compared with a non-supplemented diet(negative control,NC)and with one supplemented with the commercial EOC-based Agolin^(R) Ruminant(positive control,PC).Results From d 5 to 10 of fermentation incubation liquid was collected and analysed for pH,ammonia,protozoa count,and gas composition.Feed residues were collected for the determination of ruminal degradability.On d 10,samples of incubation liquid were also characterised for bacterial,archaeal and fungal communities by high-throughput sequencing of 16S rRNA and 26S ribosomal large subunit gene amplicons.Regardless of the duration of the fermentation period,Q-2 and C-10 were similarly efficient as PC in mitigating either ammonia(-37%by Q-2,-34%by PC)or methane formation(-12%by C-10,-12%by PC).The PC was also responsible for lower feed degradability and bacterial and fungal richness,whereas Q-2 and C-10 effects,particularly on microbiome diversities,were limited compared to NC.Conclusions All additives showed the potential to mitigate methane or ammonia formation,or both,in vitro over a period of 10 d.However,several differences occurred between PC and Q-2/C-10,indicating different mechanisms of action.The pronounced defaunation caused by PC and its suggested consequences apparently determined at least part of the mitigant effects.Although the depressive effect on NDF degradability caused by Q-2 and C-10 might partially explain their mitigation properties,their mechanisms of action remain mostly to be elucidated.展开更多
Background: Residual feed intake(RFI) in dairy cattle typically calculated at peak lactation is a measure of feed efficiency independent of milk production level. The objective of this study was to evaluate difference...Background: Residual feed intake(RFI) in dairy cattle typically calculated at peak lactation is a measure of feed efficiency independent of milk production level. The objective of this study was to evaluate differences in ruminal bacteria, biopolymer hydrolyzing enzyme activities, and overall performance between the most-and the leastefficient dairy cows during the peripartal period. Twenty multiparous Holstein dairy cows with daily ad libitum access to a total mixed ration from d-10 to d 60 relative to the calving date were used. Cows were classified into most-efficient(i.e. with low RFI, n = 10) and least-efficient(i.e. with high RFI, n = 10) based on a linear regression model involving dry matter intake(DMI), fat-corrected milk(FCM), changes in body weight(BW), and metabolic BW.Results: The most-efficient cows had ~ 2.6 kg/d lower DMI at wk 4, 6, 7, and 8 compared with the least-efficient cows. In addition, the most-efficient cows had greater relative abundance of total ruminal bacterial community during the peripartal period. Compared with the least-efficient cows, the most-efficient cows had 4-fold greater relative abundance of Succinivibrio dextrinosolvens at d-10 and d 10 around parturition and tended to have greater abundance of Fibrobacter succinogenes and Megaspheara elsdenii. In contrast, the relative abundance of Butyrivibrio proteoclasticus and Streptococcus bovis was lower and Succinimonas amylolytica and Prevotella bryantii tended to be lower in the most-efficient cows around calving. During the peripartal period, the most-efficient cows had lower enzymatic activities of cellulase, amylase, and protease compared with the least-efficient cows.Conclusions: The results suggest that shifts in ruminal bacteria and digestive enzyme activities during the peripartal period could, at least in part, be part of the mechanism associated with better feed efficiency in dairy cows.展开更多
Background: The number and diversity of uncultured ruminal bacterial and archaeal species revealed by 16S rRNA gene firs) sequences greatly exceeds that of cultured bacteria and archaea. However, the significance of...Background: The number and diversity of uncultured ruminal bacterial and archaeal species revealed by 16S rRNA gene firs) sequences greatly exceeds that of cultured bacteria and archaea. However, the significance of uncultured microbes remains undetermined. The objective of this study was to assess the numeric importance of select uncultured bacteria and cultured bacteria and the impact of diets and microenvironments within cow rumen in a comparative manner. Results: Liquid and adherent fractions were obtained from the rumen of Jersey cattle fed hay alone and Holstein cattle fed hay plus grain. The populations of cultured and uncultured bacteria present in each fraction were quantified using specific real-time PCR assays. The population of total bacteria was similar between fractions or diets, while total archaea was numerically higher in the hay-fed Jersey cattle than in the hay-grain-fed Holstein cattle. The population of the genus Prevotello was about one log smaller than that of total bacteria. The populations of Fibrobocter succinogenes, Ruminococcus flovefociens, the genus Butyrivibrio, and R. albus was at least one log smaller than that of genus Prevotello. Four of the six uncultured bacteria quantified were as abundant as F. succinogenes, R. flovefociens and the genus Butyrivibrio. In addition, the populations of several uncultured bacteria were significantly higher in the adherent fractions than in the liquid fractions. These uncultured bacteria may be associated with fiber degradation. Conclusions: Some uncultured bacteria are as abundant as those of major cultured bacteria in the rumen. Uncultured bacteria may have important contribution to ruminal fermentation. Population dynamic studies of uncultured bacteria in a comparative manner can help reveal their ecological features and importance to rumen functions.展开更多
Quorum sensing(QS) is a type of microbe-microbe communication system that is widespread among the microbial world, particularly among microorganisms that are symbiotic with plants and animals. Thereby, the cell-cell...Quorum sensing(QS) is a type of microbe-microbe communication system that is widespread among the microbial world, particularly among microorganisms that are symbiotic with plants and animals. Thereby, the cell-cell signalling is likely to occur in an anaerobic rumen environment, which is a complex microbial ecosystem. In this study, using six ruminally fistulated Liuyang black goats as experimental animals, we aimed to detect the activity of quorum sensing autoinducers(AI) both in vivo and in vitro and to clone the lux S gene that encoded autoinducer-2(AI-2) synthase of microbial samples that were collected from the rumen of goats. Neutral detergent fiber(NDF) and soluble starch were the two types of substrates that were used for in vitro fermentation. The fermented fluid samples were collected at 0, 2, 4, 6, 8, 12, 24, 36, and 48 h of incubation. The acyl-homoserine lactones(AHLs) activity was determined using gas chromatography-mass spectrometer(GC-MS) analysis. However, none of the rumen fluid extracts that were collected from the goat rumen showed the same or similar fragmentation pattern to AHLs standards. Meanwhile, the AI-2 activity, assayed using a Vibrio harveyi BB170 bioassay, was negative in all samples that were collected from the goat rumen and from in vitro fermentation fluids. Our results indicated that the activities of AHLs and AI-2 were not detected in the ruminal contents from six goats and in ruminal fluids obtained from in vitro fermentation at different sampling time-points. However, the homologues of lux S in Prevotella ruminicola were cloned from in vivo and in vitro ruminal fluids. We concluded that AHLs and AI-2 could not be detected in in vivo and in vitro ruminal fluids of goats using the current detection techniques under current dietary conditions. However, the microbes that inhabited the goat rumen had the potential ability to secrete AI-2 signaling molecules and to communicate with each other via AI-2-mediated QS because of the presence of lux S.展开更多
Microbial fuel cells (MFCs) are bioelectrochemical systems that convert chemical energy contained in organic matter into electrical energy by using the catalytic (metabolic) activity of living microorganisms. Mediator...Microbial fuel cells (MFCs) are bioelectrochemical systems that convert chemical energy contained in organic matter into electrical energy by using the catalytic (metabolic) activity of living microorganisms. Mediator-less two chamber H-type MFCs were constructed in the current study, using dairy digester microbial population as anode inocula to convert finely ground pine tree (Avicel) at 2% (w/v) to electricity. MFCs were placed at 37°C and after the circuit voltage was stabilized on d9, bovine rumen microorganisms cultured anaerobically for 48 hrs in cellulose broth media were added to treatment group of MFC at 1% v/v dosage. MFC power and current across an external resistor were measured daily for 10 d. At the end of incubation on d19 head space gas and anode chamber liquid solutions were collected and analyzed for total gas volume and composition, and volatile fatty acids, respectively. Addition of enriched rumen microorganisms to anaerobic anode chamber increased cellulose digestibility and increased both CO2 and methane production;however, it decreased the methane to CO2 ratio. Over the experimental period, electricity generation was increased with rumen microorganism addition, and power density normalized to anode surface area was 17.6 to 67.2 mW/m2 with average of 36.0 mW/m2 in treatment, while control group had 3.6 to 21.6 (AVE 12.0) mW/m2. These observations imply that biocatalysis in MFCs requires additional cellulolytic activities to utilize structural biomass in bioenergy production.展开更多
基金This research was supported by the China Special Fund for Agro-scientific Research in the Public Interest(Investigation on strategies of fattening and high-quality meat productive techniques for herbivores based on resources of unconventional roughage in Southern China)(201303144)the Top Talents Award Plan of Yangzhou University,China(2016,2020)+4 种基金the Cyanine Project of Yangzhou University(2020)the Technology Specialty Fund for Cooperation between Jilin Province and the Chinese Academy of Sciences,2016SYHZ0022)the National Key Research and Development Program of China(2016YFD0700201)the National Natural Science Foundation of China(31902180)the Natural Science Foundation of Jiangsu Province Research Project,China(BK20170488).
文摘The objective of this study was to evaluate the effects of adding formic acid and corn flour supplementation to banana pseudostem silages on the nutritional quality of these silages,growth,digestion,rumen fermentation and cellulolytic bacterial community of Nubian black goats fed these silages.Banana pseudostem silage was prepared either conventionally without any additives(CON)or mixed with 0.6% formic acid(F),10% corn flour(C),or both(F+C).Four experimental diets containing 40% of the corresponding silages were designed with roughage to concentrate ratio of 50:50(dry matter(DM)basis).A total of 48 Nubian black castrated goats(body weight(BW),(22.64±1.82)kg;4-mon-old)were randomized into one of the four treatment groups with 12 replicates of one castrated goat per replicate for each treatment in a completely randomized design.Each group was fed on one of the four experimental diets for 40 days.A factorial arrangement of treatments of 2(formic acid levels:0 and 0.6%)×2(corn flour:0 and 10%)was adopted.Formic acid supplementation increased(P<0.05)average daily gain,as well as lactic acid,propionate and butyric acid and water-soluble carbohydrate concentrations,but decreased(P<0.05)the feed conversion rate,pH value,acetate/propionate ratio,and butyric acid concentration relative to the CON group.Corn flour supplementation increased(P<0.05)the apparent digestibility of crude protein,neutral detergent fiber,and non-fibrous carbohydrate and Fibrobacter succinogenes,Ruminococcus albus,and Butyrivibrio fibrisolvens populations,but decreased(P<0.05)the Ruminococcus flavefaciens population relative to the CON group.There were no F×C treatment interactions(P>0.05)for any of the other indices except for the apparent digestibility of non-fibrous carbohydrate(NFC)(P<0.05).The results demonstrated that adding 0.6% formic acid and 10% corn flour supplementation to banana pseudostem silages improved the nutritional quality of these silages and enhanced the growth performance of Nubian black castrated goats by improving apparent nutrient digestibility,and regulating ruminal fermentation and bacteria populations.
基金supported by National Dairy Industry and Technology System(CARS-37)National Natural Science Foundation of China(31402099)
文摘Background: Original rumen digesta, rumen liquid and solid fractions have been frequently used to assess the rumen bacterial community. However, bacterial profiles in rumen original digesta, liquid and solid fractions vary from each other and need to be better established.Methods: To compare bacterial profiles in each fraction, samples of rumen digesta from six cows fed either a high fiber diet(HFD) or a high energy diet(HED) were collected via rumen fistulas. Rumen digesta was then squeezed through four layers of cheesecloth to separate liquid and solid fractions. The bacterial profiles of rumen original digesta, liquid and solid fractions were analyzed with High-throughput sequencing technique.Results: Rumen bacterial diversity was mainly affected by diet and individual cow(P 〉 0.05) rather than rumen fraction. Bias distributed bacteria were observed in solid and liquid fractions of rumen content using Venn diagram and LEf Se analysis. Fifteen out of 16 detected biomarkers(using LEf Se analysis) were found in liquid fraction, and these 15 biomarkers contributed the most to the bacterial differences among rumen content fractions.Conclusions: Similar results were found when using samples of original rumen digesta, rumen liquid or solid fractions to assess diversity of rumen bacteria; however, more attention should be draw onto bias distributed bacteria in different ruminal fractions, especially when liquid fraction has been used as a representative sample for rumen bacterial study.
基金carried out under the financial support from the National Natural Science Foundation of China(30571344).
文摘Studies on the bacterial predation rate by rumen protozoa were carried out under laboratory conditions using a technique of fluorescence-labeled bacteria (FLB). Four Xuhuai goats were used in this experiment to obtain rumen protozoa and bacteria. Two groups were designed as follows: One group was the whole bacteria which were labeled using fluorescence through removing free bacteria from rumen fluid (WFLB); the other group was the bacteria which were labeled using fluorescence without removing free bacteria from rumen fluid (FLB). The result indicated that the bacterial predation rates of rumen protozoa was 398.4 cells/(cell h) for the group WFLB, 230.4 cells/(cell h) for the group FLB, when the corresponding values expressed as bacteria-N, they were 2.15 pg N/(cell h) for the group WFLB, and 1.24 pg N/(cell h) for the group FLB, respectively. Extrapolating the assimilation quantity of nitrogen by ciliates on bacteria of Xuhuai goat, there were 103.2 mg N/(d capita) for the group WFLB, and 59.5 mg N/(d capita) for the group FLB, respectively. It was estimated that protein losses due to microbial recycling were 0.645 g pro/(d capita) for the group WFLB and 0.372 g pro/(d capita) for the group FLB, respectively. In addition, the fluorescence-labeled technique would be a potential assay for the determination of bacterial predation rate by rumen protozoa.
文摘Rumen of cattle harbors many microorganisms responsible for bioconversion of nutrients into a source of energy for the animals. In recent years many rumen microbes have been isolated and characterized by sequence analysis of 16S ribosomal RNA gene. Some of the microbes have also been recommended as feed additives for improving the overall growth or production of animals. Rumen bacteria which have potential application in animal feed stuffs were isolated and characterized in this experiment. Isolation was carried out from the rumen of cattle (Bos taurus) using techniques of serial dilutions and repeated tubing of the selectively enriched microbial cultures by using the specific media for rumen bacteria. All the isolates were then screened for in vitro gas production and cellulase enzyme activity and four superior isolates were selected and characterized. There were 18.00% to 23.00% increases in gas production on addition of these isolates to the rumen fluid of cattle and there was better cellulase enzyme activity. Two isolates were identified as Butyrivibrio fibrisolvens, one isolate as Streptococcus species and one isolate as Clostridium aminophilum. This indicated that, these isolates are superior and may have potential to be used as microbial feed additive in ruminants if fed in higher quantity.
基金partially funded with Ferrero 3P projectsupported by the European Union under the European Regional Development Fund(part of the Union’s response to the COVID-19 outbreak,AXIS VI—Investment Priority 13i—Action 3.1.1)。
文摘Background Dietary supplements based on tannin extracts or essential oil compounds(EOC)have been repeatedly reported as a promising feeding strategy to reduce the environmental impact of ruminant husbandry.A previous batch culture screening of various supplements identified selected mixtures with an enhanced potential to mitigate ruminal methane and ammonia formation.Among these,Q-2(named after quebracho extract and EOC blend 2,composed of carvacrol,thymol,and eugenol)and C-10(chestnut extract and EOC blend 10,consisting of oregano and thyme essential oils and limonene)have been investigated in detail in the present study with the semi-continuous rumen simulation technique(Rusitec)in three independent runs.For this purpose,Q-2 and C-10,dosed according to the previous study,were compared with a non-supplemented diet(negative control,NC)and with one supplemented with the commercial EOC-based Agolin^(R) Ruminant(positive control,PC).Results From d 5 to 10 of fermentation incubation liquid was collected and analysed for pH,ammonia,protozoa count,and gas composition.Feed residues were collected for the determination of ruminal degradability.On d 10,samples of incubation liquid were also characterised for bacterial,archaeal and fungal communities by high-throughput sequencing of 16S rRNA and 26S ribosomal large subunit gene amplicons.Regardless of the duration of the fermentation period,Q-2 and C-10 were similarly efficient as PC in mitigating either ammonia(-37%by Q-2,-34%by PC)or methane formation(-12%by C-10,-12%by PC).The PC was also responsible for lower feed degradability and bacterial and fungal richness,whereas Q-2 and C-10 effects,particularly on microbiome diversities,were limited compared to NC.Conclusions All additives showed the potential to mitigate methane or ammonia formation,or both,in vitro over a period of 10 d.However,several differences occurred between PC and Q-2/C-10,indicating different mechanisms of action.The pronounced defaunation caused by PC and its suggested consequences apparently determined at least part of the mitigant effects.Although the depressive effect on NDF degradability caused by Q-2 and C-10 might partially explain their mitigation properties,their mechanisms of action remain mostly to be elucidated.
基金supported by Hatch funds under project ILLU-538-914,National Institute of Food and Agriculture(Washington,DC)
文摘Background: Residual feed intake(RFI) in dairy cattle typically calculated at peak lactation is a measure of feed efficiency independent of milk production level. The objective of this study was to evaluate differences in ruminal bacteria, biopolymer hydrolyzing enzyme activities, and overall performance between the most-and the leastefficient dairy cows during the peripartal period. Twenty multiparous Holstein dairy cows with daily ad libitum access to a total mixed ration from d-10 to d 60 relative to the calving date were used. Cows were classified into most-efficient(i.e. with low RFI, n = 10) and least-efficient(i.e. with high RFI, n = 10) based on a linear regression model involving dry matter intake(DMI), fat-corrected milk(FCM), changes in body weight(BW), and metabolic BW.Results: The most-efficient cows had ~ 2.6 kg/d lower DMI at wk 4, 6, 7, and 8 compared with the least-efficient cows. In addition, the most-efficient cows had greater relative abundance of total ruminal bacterial community during the peripartal period. Compared with the least-efficient cows, the most-efficient cows had 4-fold greater relative abundance of Succinivibrio dextrinosolvens at d-10 and d 10 around parturition and tended to have greater abundance of Fibrobacter succinogenes and Megaspheara elsdenii. In contrast, the relative abundance of Butyrivibrio proteoclasticus and Streptococcus bovis was lower and Succinimonas amylolytica and Prevotella bryantii tended to be lower in the most-efficient cows around calving. During the peripartal period, the most-efficient cows had lower enzymatic activities of cellulase, amylase, and protease compared with the least-efficient cows.Conclusions: The results suggest that shifts in ruminal bacteria and digestive enzyme activities during the peripartal period could, at least in part, be part of the mechanism associated with better feed efficiency in dairy cows.
基金partially supported by an OARDC award(2010-007)to Z.Y
文摘Background: The number and diversity of uncultured ruminal bacterial and archaeal species revealed by 16S rRNA gene firs) sequences greatly exceeds that of cultured bacteria and archaea. However, the significance of uncultured microbes remains undetermined. The objective of this study was to assess the numeric importance of select uncultured bacteria and cultured bacteria and the impact of diets and microenvironments within cow rumen in a comparative manner. Results: Liquid and adherent fractions were obtained from the rumen of Jersey cattle fed hay alone and Holstein cattle fed hay plus grain. The populations of cultured and uncultured bacteria present in each fraction were quantified using specific real-time PCR assays. The population of total bacteria was similar between fractions or diets, while total archaea was numerically higher in the hay-fed Jersey cattle than in the hay-grain-fed Holstein cattle. The population of the genus Prevotello was about one log smaller than that of total bacteria. The populations of Fibrobocter succinogenes, Ruminococcus flovefociens, the genus Butyrivibrio, and R. albus was at least one log smaller than that of genus Prevotello. Four of the six uncultured bacteria quantified were as abundant as F. succinogenes, R. flovefociens and the genus Butyrivibrio. In addition, the populations of several uncultured bacteria were significantly higher in the adherent fractions than in the liquid fractions. These uncultured bacteria may be associated with fiber degradation. Conclusions: Some uncultured bacteria are as abundant as those of major cultured bacteria in the rumen. Uncultured bacteria may have important contribution to ruminal fermentation. Population dynamic studies of uncultured bacteria in a comparative manner can help reveal their ecological features and importance to rumen functions.
基金financially support of the Chinese Academy of Sciences (KZCX2-YW-455)the CAS/SAFEA International Partnership Program for Creative Research Teams,China (KZCX2-YW-T07) and K C Wong Education, Hong Kong
文摘Quorum sensing(QS) is a type of microbe-microbe communication system that is widespread among the microbial world, particularly among microorganisms that are symbiotic with plants and animals. Thereby, the cell-cell signalling is likely to occur in an anaerobic rumen environment, which is a complex microbial ecosystem. In this study, using six ruminally fistulated Liuyang black goats as experimental animals, we aimed to detect the activity of quorum sensing autoinducers(AI) both in vivo and in vitro and to clone the lux S gene that encoded autoinducer-2(AI-2) synthase of microbial samples that were collected from the rumen of goats. Neutral detergent fiber(NDF) and soluble starch were the two types of substrates that were used for in vitro fermentation. The fermented fluid samples were collected at 0, 2, 4, 6, 8, 12, 24, 36, and 48 h of incubation. The acyl-homoserine lactones(AHLs) activity was determined using gas chromatography-mass spectrometer(GC-MS) analysis. However, none of the rumen fluid extracts that were collected from the goat rumen showed the same or similar fragmentation pattern to AHLs standards. Meanwhile, the AI-2 activity, assayed using a Vibrio harveyi BB170 bioassay, was negative in all samples that were collected from the goat rumen and from in vitro fermentation fluids. Our results indicated that the activities of AHLs and AI-2 were not detected in the ruminal contents from six goats and in ruminal fluids obtained from in vitro fermentation at different sampling time-points. However, the homologues of lux S in Prevotella ruminicola were cloned from in vivo and in vitro ruminal fluids. We concluded that AHLs and AI-2 could not be detected in in vivo and in vitro ruminal fluids of goats using the current detection techniques under current dietary conditions. However, the microbes that inhabited the goat rumen had the potential ability to secrete AI-2 signaling molecules and to communicate with each other via AI-2-mediated QS because of the presence of lux S.
文摘Microbial fuel cells (MFCs) are bioelectrochemical systems that convert chemical energy contained in organic matter into electrical energy by using the catalytic (metabolic) activity of living microorganisms. Mediator-less two chamber H-type MFCs were constructed in the current study, using dairy digester microbial population as anode inocula to convert finely ground pine tree (Avicel) at 2% (w/v) to electricity. MFCs were placed at 37°C and after the circuit voltage was stabilized on d9, bovine rumen microorganisms cultured anaerobically for 48 hrs in cellulose broth media were added to treatment group of MFC at 1% v/v dosage. MFC power and current across an external resistor were measured daily for 10 d. At the end of incubation on d19 head space gas and anode chamber liquid solutions were collected and analyzed for total gas volume and composition, and volatile fatty acids, respectively. Addition of enriched rumen microorganisms to anaerobic anode chamber increased cellulose digestibility and increased both CO2 and methane production;however, it decreased the methane to CO2 ratio. Over the experimental period, electricity generation was increased with rumen microorganism addition, and power density normalized to anode surface area was 17.6 to 67.2 mW/m2 with average of 36.0 mW/m2 in treatment, while control group had 3.6 to 21.6 (AVE 12.0) mW/m2. These observations imply that biocatalysis in MFCs requires additional cellulolytic activities to utilize structural biomass in bioenergy production.