The compressive strength of the cement-silica fume blends with 5mass%, 10mass%, 20mass% and 30mass% of silica fume and water to binder ratio of 0.28, 0.32 and 0.36 from three days to ninety days were investigated. The...The compressive strength of the cement-silica fume blends with 5mass%, 10mass%, 20mass% and 30mass% of silica fume and water to binder ratio of 0.28, 0.32 and 0.36 from three days to ninety days were investigated. The reaction degree of silica fume was calculated from the Q4 silica tetrahedron, which was used as a probe obtained from 29 Si solid state nuclear magnetic resonance analysis. The fl at of compressive strength after 28 days disappeared for blended cement with inereasing reaction degree of silica fume. The compressive strength of the blended cement pastes approached that of P.I. cement pastes after 56 days and exceeded that after 90 days. The addition of silica fume and the w/b ratio of blends are both critical to the reaction degree of silica fume. The appropriate addition of silica fume, high silica fume reaction degree and low w/b ratio are benefi cial to the compressive strength of the cement-silica fume blends.展开更多
Effects of strain rate and water-to-cement ratio on the dynamic compressive mechanical behavior of cement mortar are investigated by split Hopkinson pressure bar(SHPB) tests. 124 specimens are subjected to dynamic uni...Effects of strain rate and water-to-cement ratio on the dynamic compressive mechanical behavior of cement mortar are investigated by split Hopkinson pressure bar(SHPB) tests. 124 specimens are subjected to dynamic uniaxial compressive loadings.Strain rate sensitivity of the materials is measured in terms of failure modes, stress-strain curves, compressive strength, dynamic increase factor(DIF) and critical strain at peak stress. A significant change in the stress-strain response of the materials with each order of magnitude increase in strain rate is clearly seen from test results. The slope of the stress-strain curve after peak value for low water-to-cement ratio is steeper than that of high water-to-cement ratio mortar. The compressive strength increases with increasing strain rate. With increase in strain rate, the dynamic increase factor(DIF) increases. However, this increase in DIF with increase in strain rate does not appear to be a function of the water-to-cement ratio. The critical compressive strain increases with the strain rate.展开更多
The properties of a new magnesium Oxychloride cement (MOC) material formed by silica fume uniformly mix in MOC paste was presents. The influence of silica fume on the water resistance and compressive strength of MOC p...The properties of a new magnesium Oxychloride cement (MOC) material formed by silica fume uniformly mix in MOC paste was presents. The influence of silica fume on the water resistance and compressive strength of MOC paste was invesigated in this study. It is shown that when 30 weight percent of silica fume is added to the MOC paste, a high strength and water resisting new material with 112MPa compressive strength and 1 00 water resisting coefficient could by obtained.展开更多
To investigate the mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions, uniaxial compression test and ultrasonic test were performed. Test results show that the relative dynamic elas...To investigate the mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions, uniaxial compression test and ultrasonic test were performed. Test results show that the relative dynamic elastic modulus, the mass variation,and the compressive strength of cement mortar increase first, and then decrease with increasing erosion time in sodium sulfate and sodium chloride solutions. The relative dynamic elastic moduli and the compressive strengths of cement mortars with water/cement ratios of 0.55 and 0.65 in sodium sulfate solution are lower than those in sodium chloride solution with the same concentration at the420 th day of immersion. The compressive strength of cement mortar with water/cement ratio of 0.65 is more sensitive to strain rate than that with water/cement ratio of 0.55. In addition, the strain-rate sensitivity of compressive strength of cement mortar will increase under attacks of sodium sulfate or sodium chloride solution.展开更多
As a 3D micro-nano material, layered double hydroxides have been widely used in many fields, especially for reinforced composite materials. In this paper, Li Al-LDHs was obtained by a hydrothermal method. In order to ...As a 3D micro-nano material, layered double hydroxides have been widely used in many fields, especially for reinforced composite materials. In this paper, Li Al-LDHs was obtained by a hydrothermal method. In order to investigate the effects of Li Al-LDHs on the early hydration of calcium sulphoaluminate(CSA) cement paste, compressive strength, setting time and hydration heat were tested while X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FT-IR), scaning electron microscopy(SEM) and differential scanning calorimetry(DSC) analysis were employed. The results indicated that Li Al-LDHs could significantly improve the early compressive strength and shorten the setting time of calcium sulphoaluminate cement paste with 3 wt% concentration. Besides, the hydration exothermic rate within 5h was accelerated with increasing Li Al-LDHs content. Moreover, the addition of Li Al-LDHs did not result in the formation of a new phase, but increased the quantity of hydration products providing higher compressive strength, shorter setting time and denser microstructure.展开更多
基金Funded by the National Basic Research Program of China(No.2009CB623100)
文摘The compressive strength of the cement-silica fume blends with 5mass%, 10mass%, 20mass% and 30mass% of silica fume and water to binder ratio of 0.28, 0.32 and 0.36 from three days to ninety days were investigated. The reaction degree of silica fume was calculated from the Q4 silica tetrahedron, which was used as a probe obtained from 29 Si solid state nuclear magnetic resonance analysis. The fl at of compressive strength after 28 days disappeared for blended cement with inereasing reaction degree of silica fume. The compressive strength of the blended cement pastes approached that of P.I. cement pastes after 56 days and exceeded that after 90 days. The addition of silica fume and the w/b ratio of blends are both critical to the reaction degree of silica fume. The appropriate addition of silica fume, high silica fume reaction degree and low w/b ratio are benefi cial to the compressive strength of the cement-silica fume blends.
基金Project(51479048) supported by National Natural Science Foundation of China
文摘Effects of strain rate and water-to-cement ratio on the dynamic compressive mechanical behavior of cement mortar are investigated by split Hopkinson pressure bar(SHPB) tests. 124 specimens are subjected to dynamic uniaxial compressive loadings.Strain rate sensitivity of the materials is measured in terms of failure modes, stress-strain curves, compressive strength, dynamic increase factor(DIF) and critical strain at peak stress. A significant change in the stress-strain response of the materials with each order of magnitude increase in strain rate is clearly seen from test results. The slope of the stress-strain curve after peak value for low water-to-cement ratio is steeper than that of high water-to-cement ratio mortar. The compressive strength increases with increasing strain rate. With increase in strain rate, the dynamic increase factor(DIF) increases. However, this increase in DIF with increase in strain rate does not appear to be a function of the water-to-cement ratio. The critical compressive strain increases with the strain rate.
文摘The properties of a new magnesium Oxychloride cement (MOC) material formed by silica fume uniformly mix in MOC paste was presents. The influence of silica fume on the water resistance and compressive strength of MOC paste was invesigated in this study. It is shown that when 30 weight percent of silica fume is added to the MOC paste, a high strength and water resisting new material with 112MPa compressive strength and 1 00 water resisting coefficient could by obtained.
基金Project(LY13E080021) supported by the Natural Science Foundation of Zhejiang Province,ChinaProject(2011A610072) supported by the Ningbo Municipal Natural Science Foundation,ChinaProject(XKL14D2063) supported by Subject Program of Ningbo University,China
文摘To investigate the mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions, uniaxial compression test and ultrasonic test were performed. Test results show that the relative dynamic elastic modulus, the mass variation,and the compressive strength of cement mortar increase first, and then decrease with increasing erosion time in sodium sulfate and sodium chloride solutions. The relative dynamic elastic moduli and the compressive strengths of cement mortars with water/cement ratios of 0.55 and 0.65 in sodium sulfate solution are lower than those in sodium chloride solution with the same concentration at the420 th day of immersion. The compressive strength of cement mortar with water/cement ratio of 0.65 is more sensitive to strain rate than that with water/cement ratio of 0.55. In addition, the strain-rate sensitivity of compressive strength of cement mortar will increase under attacks of sodium sulfate or sodium chloride solution.
基金Funded by the National Natural Sciense Foundation of China(No.51272068)
文摘As a 3D micro-nano material, layered double hydroxides have been widely used in many fields, especially for reinforced composite materials. In this paper, Li Al-LDHs was obtained by a hydrothermal method. In order to investigate the effects of Li Al-LDHs on the early hydration of calcium sulphoaluminate(CSA) cement paste, compressive strength, setting time and hydration heat were tested while X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FT-IR), scaning electron microscopy(SEM) and differential scanning calorimetry(DSC) analysis were employed. The results indicated that Li Al-LDHs could significantly improve the early compressive strength and shorten the setting time of calcium sulphoaluminate cement paste with 3 wt% concentration. Besides, the hydration exothermic rate within 5h was accelerated with increasing Li Al-LDHs content. Moreover, the addition of Li Al-LDHs did not result in the formation of a new phase, but increased the quantity of hydration products providing higher compressive strength, shorter setting time and denser microstructure.