In this paper,the durability of cement mortar prepared with a recycled-concrete fine powder(RFP)was examined;including the analysis of a variety of aspects,such as the carbonization,sulfate attack and chloride ion ero...In this paper,the durability of cement mortar prepared with a recycled-concrete fine powder(RFP)was examined;including the analysis of a variety of aspects,such as the carbonization,sulfate attack and chloride ion erosion resistance.The results indicate that the influence of RFP on these three aspects is different.The carbonization depth after 30 days and the chloride diffusion coefficient of mortar containing 10%RFP decreased by 13.3%and 28.19%.With a further increase in the RFP content,interconnected pores formed between the RFP particles,leading to an acceleration of the penetration rate of CO_(2)and Cl^(−).When the RFP content was less than 50%,the corrosion resistance coefficient of the compressive strength of the mortar was 0.84-1.05 after 90 days of sulfate attack.But the expansion and cracking of the mortar was effectively alleviated due to decrease of the gypsum production.Scanning electron microscope(SEM)analysis has confirmed that 10%RFP contributes to the formation of a dense microstructure in the cement mortar.展开更多
Cement-based materials are fundamental in the construction industry,and enhancing their properties is an ongoing challenge.The use of superabsorbent polymers(SAP)has gained significant attention as a possible way to i...Cement-based materials are fundamental in the construction industry,and enhancing their properties is an ongoing challenge.The use of superabsorbent polymers(SAP)has gained significant attention as a possible way to improve the performance of cement-based materials due to their unique water-absorption and retention properties.This study investigates the multifaceted impact of kaolin intercalation-modified superabsorbent polymers(K-SAP)on the properties of cement mortar.The results show that K-SAP significantly affects the cement mortar’s rheological behavior,with distinct phases of water absorption and release,leading to changes in workability over time.Furthermore,K-SAP alters the hydration kinetics,delaying the exothermic peak of hydration and subsequently modifying the heat release kinetics.Notably,K-SAP effectively maintains a higher internal relative humidity within the mortar,reducing the autogenous shrinkage behavior.Moreover,K-SAP can have a beneficial effect on pore structure and this can be ascribed to the internal curing effect of released water from K-SAP.展开更多
The application of carbon nanomaterials, particularly graphene and carbon nanotubes, in cement-based composites is highly significant. These materials demonstrate the multifunctionality of carbon and offer extensive p...The application of carbon nanomaterials, particularly graphene and carbon nanotubes, in cement-based composites is highly significant. These materials demonstrate the multifunctionality of carbon and offer extensive possibilities for technological advancements. This research analyzes how the integration of graphene into cement-based composites enhances damping and mechanical properties, thereby contributing to the safety and durability of structures. Research on carbon nanomaterials is ongoing and is expected to continue driving innovation across various industrial sectors, promoting the sustainable development of building materials.展开更多
Cement is widely used in engineering applications,but it has both the characteristics of high brittleness and poor bending resistance.In this paper,the effects of different amounts ofgraphene oxide on the flexural str...Cement is widely used in engineering applications,but it has both the characteristics of high brittleness and poor bending resistance.In this paper,the effects of different amounts ofgraphene oxide on the flexural strength and compressive strength of cement mortar were studied by doping a certain amount of graphene oxide with cement mortar,and the strengthening mechanism of graphene oxide on cement mortar was obtained through microstructure detection.It is found that graphene oxide has a significant enhancement effect on the macroscopic mechanical properties of cement mortar,and graphene oxide provides nano-nucleation sites and growth templates for cement mortar,accelerates the hydration process,reduces the voids between hydration products,greatly increases the compactness,and improves the macroscopic properties of cement-based materials.展开更多
The pozzolanic activity of coal gangue burned at different burning temperatures was investigated. The burned coal gangue was mixed with portland cement in different proportions ( 20% - 60% ). The pozzolanic activity...The pozzolanic activity of coal gangue burned at different burning temperatures was investigated. The burned coal gangue was mixed with portland cement in different proportions ( 20% - 60% ). The pozzolanic activity of coal gangue burned and the hydration products were examined, the compressive strengths of the pastes of the mixtures were tested, and the mechanism of the reaction was discussed. The experimental results slum, that the coal gangue burned at 750 ℃ has the optimum pozzolanic activity, and the burned coal ganguc with SiO2 and Al2 O3 is in an active form. When the coal gangue burned at 750℃ is mixed into portland cement, the content of calcium hydroxide in paste is significantly reduced, while the contents of hydrated calcium silk.ate and hydrated calcium aluminate are increased accordingly, hence resulting in the improvement of the microstructure of mortar. The compressive strength of cement paste decreases with increasing the content of burncd coal gangue. The decease in strength is small in the range of 20% - 30% coal gangue substitution and significant in 30%- 60% substitution.展开更多
To study the influence of multi-wall carbon nanotubes (MWCNTs) on the mechanical and microstructural properties of cementitious composites, 0.00, 0.02, 0.08, 0.10, and 0.20 wt% of multi-wall carbon nanotubes were ad...To study the influence of multi-wall carbon nanotubes (MWCNTs) on the mechanical and microstructural properties of cementitious composites, 0.00, 0.02, 0.08, 0.10, and 0.20 wt% of multi-wall carbon nanotubes were added into cement mortar, in which the cement-sand ratio was 1:1.5. The flexural and compressive strengths of cement mortar at the age of 3, 7, 28 and 90 d and the fracture performance at the age of 28 d were determined, its 2D micrograph was tested by means of SEM, and the 3D defects distribution was firstly determined with or without CNTs by means of XCT (X-ray computerized tomography). The results showed that 0.08 wt% of CNTs improved the compressive strength and flexural strength by 18% and 19~A, respectively, and a significant improvement of its fracture property was observed. Moreover lower addition of carbon nanotubes to cement mortars can improve its microstructure and decrease the defects significantly compared to the cement mortar without CNTs. With the increase of the content of CNTs, the mechanical properties of cement mortars presented to be declined largely due to the agglomeration of CNTs.展开更多
Functionalized graphene nano-sheets(FGN) of 0.01%-0.05%(mass fraction) were added to produce FGN-cement composites in the form of mortars. Flow properties, mechanical properties and microstructure of the cementitious ...Functionalized graphene nano-sheets(FGN) of 0.01%-0.05%(mass fraction) were added to produce FGN-cement composites in the form of mortars. Flow properties, mechanical properties and microstructure of the cementitious material were then investigated. The results indicate that the addition of FGN decreases the fluidity slightly and improves mechanical properties of cement-based composites significantly. The highest strength is obtained with FGN content of 0.02% where the flexural strength and compressive strength at 28 days are 12.917 MPa and 52.42 MPa, respectively. Besides, scanning electron micrographs show that FGN can regulate formation of massive compact cross-linking structures and thermo gravimetric analysis indicates that FGN can accelerate the hydration reaction to increase the function of the composite effectively.展开更多
This research focused on using the waste rubber powder as a kind of regenerate resources to improve the mechanical properties of cement mortar.The two kinds of hybrid modified rubber powder TRP and ATRP were prepared ...This research focused on using the waste rubber powder as a kind of regenerate resources to improve the mechanical properties of cement mortar.The two kinds of hybrid modified rubber powder TRP and ATRP were prepared by sol-gel method and then used in cement mortar.The structures and properties of them were studied.It is shown that the nano Si-O-Si network is generated in TRP and ATRP networks and the hydrophilic group is grafted on the surface of ATRP.The mechanical properties of rubber-treated mortar(RTM) were tested and the microstructures of them were also studied.Compared to the mortars with unmodified rubber powders(RP),NaOH treated rubber powder(SRP) and coupling agent treated rubber powder(CRP),the RTM with ATRP has the highest compressive strength and flexural strength.The stress-strain curves shown that the peak of stress of RTM with ATRP is increased and indicated the higher compression deformation and toughness.It is found that the interfacial adhesion between the ATRP and cement mortar is increased distinctly by SEM,which results in enhanced ductility and mechanical properties of RTM with ATRP.展开更多
Chemical admixtures are of paramount importance to the performance of modern cement based composites. In this paper, we performed a series of tests to investigate the effects of chemical admixtures on the cement aspha...Chemical admixtures are of paramount importance to the performance of modern cement based composites. In this paper, we performed a series of tests to investigate the effects of chemical admixtures on the cement asphalt mortar(CA mortar), i e, compressive strength, frost resistance, permeability, fatigue resistance, pore structure and microstructure. In particular, two types of chemical admixtures were tested, i e, defoamer(tributyl phosphate(TBP)) and polycarboxylate superplasticizer(PS). The results indicate that the addition of TBP and PS eliminates big bubbles and promotes small non-connected pores forming in matrix. Besides, an optimum dosage of TBP and PS may be determined with respect to the frost resistance, permeability and fatigue resistance of CA mortar. Further elaborative discussions are presented as well as experimental evidences from mercury intrusion porosimetry, scanning electron microscopy and energy dispersive spectroscopy.展开更多
The epoxy resin polymer cement mortars with excellent performances were made up through modifying ordinary Portland cement with emulsified epoxy and micro fine slag.The microstructure of the epoxy resin polymer cemen...The epoxy resin polymer cement mortars with excellent performances were made up through modifying ordinary Portland cement with emulsified epoxy and micro fine slag.The microstructure of the epoxy resin polymer cement materials was studied and their hydration and hardening characteristics were discussed by means of modern analysis measures such as SEM,XRD and Hg intrusion micromeritics.The experimental results indicate that the series effects of water reducing,density,pozzolanicity,filling and solidification crosslinking through the action together with epoxy organism and micro fine slag endowed cement based materials with perfect performances.The main hydration products in the system are C S H gel and hydrated calcium aluminate.At later age,AFt can be in existence,and no Ca(OH) 2 is found.When epoxy resin is solidified,the organism is in a network structure.In the micro pore structure of hydrated cement with modified epoxy and fine slag,big harmful pores were fewer,more harmless abundant micro pores were and the possible pore radius was smaller than that of ordinary Portland cement.展开更多
The polymeric admixture, the sodium-carboxymethylcellulose(CMC)/poly sodium p-styrene sulfonate(PSS)/poly vinyl acetate(PVAc) was synthesized and applied in cement mortars. The polymer was tested by FTIR and SEM, and ...The polymeric admixture, the sodium-carboxymethylcellulose(CMC)/poly sodium p-styrene sulfonate(PSS)/poly vinyl acetate(PVAc) was synthesized and applied in cement mortars. The polymer was tested by FTIR and SEM, and the results indicate that the ideal molecular structure is synthesized. The effect of addition amount of polymeric admixture and water-to-cement ratio on mechanical properties of cement mortars was studied. The polymer-modified mortars under the optimum water cement ratio and optimum polymer cement ratio, the flexural strength of polymer-modified mortars are 1.45, 1.21, and 1.17 times higher than the plain cement mortar at age of 3, 7, and 28 d, respectively.The compressive strength of polymer-modified mortars at age of 3, 7, and 28 d are 1.55, 1.40, and 1.2941 times higher than that of the plain cement mortar,respectively. Scanning electron microscope(SEM), FTIR and TG were used to analyze the effect of polymer emulsion on cement hydration reaction. The results show that the polymer emulsion can promote the hydration reaction of cement.展开更多
In situ monitoring of the microstructure evolution of cement mortar in accelerated carbonation reaction for different carbonation ages was carried out by X-ray computed tomography (XCT). And the carbonation degrees ...In situ monitoring of the microstructure evolution of cement mortar in accelerated carbonation reaction for different carbonation ages was carried out by X-ray computed tomography (XCT). And the carbonation degrees of different time were measured by the volume fraction of uncarbonated and carbonated parts. Meanwhile, we presented a model for the carbonation of cement mortar by means of X-ray computed tomography (XCT). Based on the principles of chemical engineering processes, the reacted products become a solid inert ash layer. Finally, the model was validated with results of accelerated carbonation of cement mortar. The model is thus able to reasonably predict the carbonation ohenomena for accelerated conditions.展开更多
Mortar prisms were made with three different cementitious materials (with or without mineral admixture) plus 30% mass of limestone filler. After 28 days of curing in water at room temperature, the mortars were submerg...Mortar prisms were made with three different cementitious materials (with or without mineral admixture) plus 30% mass of limestone filler. After 28 days of curing in water at room temperature, the mortars were submerged in 2% magnesium sulfate solution at different temperatures (5℃, 20℃and alternate temperature between 5℃and 20℃) for a year. The appearance and strength development were measured on these immersed prisms at intervals, and samples selected from the surface of prisms were examined by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The results show that the influence of temperature on the resistance to sulfate attack of mortar is related to the binder compositions. A higher temperature leads to a quicker strength loss and appearance deterioration of the mortar without mineral admixture. For blended cements, a higher temperature is favorable for the pozzolanic reaction of mineral admixture and the overall deterioration of mortar is reduced with the increasing temperature. When the mineral admixture has a lower reactivity, such influence of temperature on the resistance to sulfate attack of mortar containing admixtures becomes greater. At the three different solution temperatures, two blended cements show significantly improved resistances to sulfate attack. After 1 year of exposure to magnesium sulfate solutions, the formation of thaumasite was checked in the OPC mortars at both 5℃and 20℃. It is concluded that the thaumasite formation is not limited to structures at low temperature (less than 15℃).展开更多
The objective of this study is to analyze the effects of using surfactant(CTAB)and cellulose nanofibers(NFC)as an admixture in cement mortars.We examined composite properties as porosity,compression energy,thermal con...The objective of this study is to analyze the effects of using surfactant(CTAB)and cellulose nanofibers(NFC)as an admixture in cement mortars.We examined composite properties as porosity,compression energy,thermal conductivity and hydration.The results showed that with the addition of 0.7%by weight of NFC per emulsion in the presence of a cationic surfactant(CTAB).The new material produced presented a dry porosity between 4.7%and 4.4%,compressive strength between 9.8 and 22.9 MPa,and thermal conductivity between 0.95 and 2.25 W·m^(−1)·K^(−1).Thus we show better mechanical and thermal performance than that traditional Portland cement mortar with a density similar.In addition,the mortar made by emulsion of ordinary portland cement,cellulose nanofiber and organophilic clay(OC)treated with cetyltrimethylammonium bromide(CTAB)obtained has good resistance under high temperature and water,as well as excellent thermal insulation performance under high temperature and humidity conditions.This study verified that the presence of NFC promotes hydration,leading to the production of more calcium silicate and portlandite gel.展开更多
Influences of polypropylene (PP) fiber and styrene-butadiene rubber (SBR) polymer latex on the strength performance, abrasion resistance of cement mortar were studied. The experimental results show that the flexur...Influences of polypropylene (PP) fiber and styrene-butadiene rubber (SBR) polymer latex on the strength performance, abrasion resistance of cement mortar were studied. The experimental results show that the flexural strength, brittleness index (σF/σC) and abrasion resistance can be improved significantly by the addition of PP fiber and SBR polymer latex. The relationship between the flexural strength and abrasion resistance was analyzed, showing a good linear relationship between them. The reinforced mechanism of PP fiber and SBR polymer latex on cement mortar was analyzed by some microscopic tests. The test results show that the addition of SBR polymer latex has no significant influence on the cement hydration after 7 d curing. Adding SBR polymer latex into cement mortar can form a polymer transition layer in the interfaces of PP fiber and cement hydrates, which improves the bonding properties between the PP fiber and cement mortar matrix effectively.展开更多
Effects of strain rate and water-to-cement ratio on the dynamic compressive mechanical behavior of cement mortar are investigated by split Hopkinson pressure bar(SHPB) tests. 124 specimens are subjected to dynamic uni...Effects of strain rate and water-to-cement ratio on the dynamic compressive mechanical behavior of cement mortar are investigated by split Hopkinson pressure bar(SHPB) tests. 124 specimens are subjected to dynamic uniaxial compressive loadings.Strain rate sensitivity of the materials is measured in terms of failure modes, stress-strain curves, compressive strength, dynamic increase factor(DIF) and critical strain at peak stress. A significant change in the stress-strain response of the materials with each order of magnitude increase in strain rate is clearly seen from test results. The slope of the stress-strain curve after peak value for low water-to-cement ratio is steeper than that of high water-to-cement ratio mortar. The compressive strength increases with increasing strain rate. With increase in strain rate, the dynamic increase factor(DIF) increases. However, this increase in DIF with increase in strain rate does not appear to be a function of the water-to-cement ratio. The critical compressive strain increases with the strain rate.展开更多
To investigate the static compressive properties and mechanical damage evolution of rubber cement-based materials(RCBMs) with dry-and wet-curing conditions, uniaxial compression and cyclic loading-unloading tests were...To investigate the static compressive properties and mechanical damage evolution of rubber cement-based materials(RCBMs) with dry-and wet-curing conditions, uniaxial compression and cyclic loading-unloading tests were carried out on rubber cement mortar(RCM). The mechanical properties of the uniaxial compression specimens cured at 95%(wet-curing) and 50%(dry-curing) relative humidities and cyclic loading-unloading specimens cured at wet-curing were analyzed. Under uniaxial compression, the peak stress loss ratio is higher for dry-curing than for wet-curing. The peak strain decreases with the increase of rubber content, and the peak strain increases with the decrease of curing humidity. Under cyclic loading-unloading, the variation trends of residual strain differences of the normal cement mortar and RCM at each cyclic level with the number of cycles are basically the same, but the failure modes are different. The analysis of the internal mesostructure by a scanning electron microscope(SEM) shows that initial damage is further enhanced by reducing curing humidity and adding rubber aggregate. The damage constitutive model based on strain equivalence principle and statistical theories was used to describe the uniaxial compression characteristics of RCM, and the law of mechanical damage evolution was predicted.展开更多
This study deals with the analysis of the detrimental effects of a“sulfate attack”on cement mortar for different dry-wet cycles.The mass loss,tensile strength,and gas permeability coefficient were determined and ana...This study deals with the analysis of the detrimental effects of a“sulfate attack”on cement mortar for different dry-wet cycles.The mass loss,tensile strength,and gas permeability coefficient were determined and analyzed under different exposure conditions.At the same time,nitrogen adsorption(NAD),scanning electron microscopy(SEM),and X-ray diffraction(XRD)techniques were used to analyze the corresponding variations in the microstructure and the corrosion products.The results show that certain properties of the cement mortar evolve differently according to the durations of the dry-wet cycles and that some damage is caused to the mortars in aqueous solution.The pores fill with corrosion products,increasing the mortar specimen mass and tensile strength while reducing the permeability coefficient and pore size distribution.As corrosion proceeds,the crystallization pressure of the corrosion products increases,resulting in a 16%reduction in tensile strength from the initial value and a 2.6-factor increase in the permeability coefficient,indicating sensitivity to sulfate attack damage.Furthermore,the main corrosion products generated in the experiment are gypsum and ettringite.Application of osmotic pressure and extension of the immersion time can accelerate the erosion process.展开更多
To investigate the mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions, uniaxial compression test and ultrasonic test were performed. Test results show that the relative dynamic elas...To investigate the mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions, uniaxial compression test and ultrasonic test were performed. Test results show that the relative dynamic elastic modulus, the mass variation,and the compressive strength of cement mortar increase first, and then decrease with increasing erosion time in sodium sulfate and sodium chloride solutions. The relative dynamic elastic moduli and the compressive strengths of cement mortars with water/cement ratios of 0.55 and 0.65 in sodium sulfate solution are lower than those in sodium chloride solution with the same concentration at the420 th day of immersion. The compressive strength of cement mortar with water/cement ratio of 0.65 is more sensitive to strain rate than that with water/cement ratio of 0.55. In addition, the strain-rate sensitivity of compressive strength of cement mortar will increase under attacks of sodium sulfate or sodium chloride solution.展开更多
The aim of this work was to examine the microstructural changes of CEM I standardised cement mortar caused by accelerated carbonation (20% CO2 concentration) using porosity accessible to water and nitrogen adsorption....The aim of this work was to examine the microstructural changes of CEM I standardised cement mortar caused by accelerated carbonation (20% CO2 concentration) using porosity accessible to water and nitrogen adsorption. The conflicted results obtained by these two techniques showed the differences in porous domains explored, while the pore size distributions calculated from nitrogen adsorption provided evolution of the micro and meso pores during carbonation. The porosity accessible to water showed changes in all three porous domains: macro, meso and micro pores. This is because of difference in the molecular sizes between water and nitrogen molecules. Although these two techniques are different, they help to complementarily evaluate the effects of carbonation. The results also indicated the influence of type of cement on microstructural evolutions and the correlation between variations of mesopores volume and specific surface area. Changes in microstructure induce changes in macroscopic properties that we also examined such as the solid phase volume using helium pycnometry, the gas permeability, the thermal conductivity, the thermal diffusivity, and the longitudinal and transverse ultrasonic velocities.展开更多
基金This work is supported by the Zhuhai Science and Technology Project(ZH22036203200015PWC)the Open Foundation of State Key Laboratory of Subtropical Building Science(2022ZB20).
文摘In this paper,the durability of cement mortar prepared with a recycled-concrete fine powder(RFP)was examined;including the analysis of a variety of aspects,such as the carbonization,sulfate attack and chloride ion erosion resistance.The results indicate that the influence of RFP on these three aspects is different.The carbonization depth after 30 days and the chloride diffusion coefficient of mortar containing 10%RFP decreased by 13.3%and 28.19%.With a further increase in the RFP content,interconnected pores formed between the RFP particles,leading to an acceleration of the penetration rate of CO_(2)and Cl^(−).When the RFP content was less than 50%,the corrosion resistance coefficient of the compressive strength of the mortar was 0.84-1.05 after 90 days of sulfate attack.But the expansion and cracking of the mortar was effectively alleviated due to decrease of the gypsum production.Scanning electron microscope(SEM)analysis has confirmed that 10%RFP contributes to the formation of a dense microstructure in the cement mortar.
基金the National Natural Science Foundation of China(52172017 and 51902095).
文摘Cement-based materials are fundamental in the construction industry,and enhancing their properties is an ongoing challenge.The use of superabsorbent polymers(SAP)has gained significant attention as a possible way to improve the performance of cement-based materials due to their unique water-absorption and retention properties.This study investigates the multifaceted impact of kaolin intercalation-modified superabsorbent polymers(K-SAP)on the properties of cement mortar.The results show that K-SAP significantly affects the cement mortar’s rheological behavior,with distinct phases of water absorption and release,leading to changes in workability over time.Furthermore,K-SAP alters the hydration kinetics,delaying the exothermic peak of hydration and subsequently modifying the heat release kinetics.Notably,K-SAP effectively maintains a higher internal relative humidity within the mortar,reducing the autogenous shrinkage behavior.Moreover,K-SAP can have a beneficial effect on pore structure and this can be ascribed to the internal curing effect of released water from K-SAP.
文摘The application of carbon nanomaterials, particularly graphene and carbon nanotubes, in cement-based composites is highly significant. These materials demonstrate the multifunctionality of carbon and offer extensive possibilities for technological advancements. This research analyzes how the integration of graphene into cement-based composites enhances damping and mechanical properties, thereby contributing to the safety and durability of structures. Research on carbon nanomaterials is ongoing and is expected to continue driving innovation across various industrial sectors, promoting the sustainable development of building materials.
基金This work were supported by Natural Science Foundation of Zhejiang Province(LQ23E080003)a Doctoral program of Zhejiang University of science and technology(F701104L08)The Special Fund Project of Zhejiang University of Science and Technology's Basic Scientific Research Business Expenses in 2023(2023QN016).
文摘Cement is widely used in engineering applications,but it has both the characteristics of high brittleness and poor bending resistance.In this paper,the effects of different amounts ofgraphene oxide on the flexural strength and compressive strength of cement mortar were studied by doping a certain amount of graphene oxide with cement mortar,and the strengthening mechanism of graphene oxide on cement mortar was obtained through microstructure detection.It is found that graphene oxide has a significant enhancement effect on the macroscopic mechanical properties of cement mortar,and graphene oxide provides nano-nucleation sites and growth templates for cement mortar,accelerates the hydration process,reduces the voids between hydration products,greatly increases the compactness,and improves the macroscopic properties of cement-based materials.
基金Funded by Social Development Plan in Science and Technologyof Jiangsu Province (No.BS2006033)
文摘The pozzolanic activity of coal gangue burned at different burning temperatures was investigated. The burned coal gangue was mixed with portland cement in different proportions ( 20% - 60% ). The pozzolanic activity of coal gangue burned and the hydration products were examined, the compressive strengths of the pastes of the mixtures were tested, and the mechanism of the reaction was discussed. The experimental results slum, that the coal gangue burned at 750 ℃ has the optimum pozzolanic activity, and the burned coal ganguc with SiO2 and Al2 O3 is in an active form. When the coal gangue burned at 750℃ is mixed into portland cement, the content of calcium hydroxide in paste is significantly reduced, while the contents of hydrated calcium silk.ate and hydrated calcium aluminate are increased accordingly, hence resulting in the improvement of the microstructure of mortar. The compressive strength of cement paste decreases with increasing the content of burncd coal gangue. The decease in strength is small in the range of 20% - 30% coal gangue substitution and significant in 30%- 60% substitution.
基金Funded by the National Basic Research Program of China(No.2009CB623200)the Program for Changjiang Scholars and Innovative Research Team in University of China(No.IRT13075)
文摘To study the influence of multi-wall carbon nanotubes (MWCNTs) on the mechanical and microstructural properties of cementitious composites, 0.00, 0.02, 0.08, 0.10, and 0.20 wt% of multi-wall carbon nanotubes were added into cement mortar, in which the cement-sand ratio was 1:1.5. The flexural and compressive strengths of cement mortar at the age of 3, 7, 28 and 90 d and the fracture performance at the age of 28 d were determined, its 2D micrograph was tested by means of SEM, and the 3D defects distribution was firstly determined with or without CNTs by means of XCT (X-ray computerized tomography). The results showed that 0.08 wt% of CNTs improved the compressive strength and flexural strength by 18% and 19~A, respectively, and a significant improvement of its fracture property was observed. Moreover lower addition of carbon nanotubes to cement mortars can improve its microstructure and decrease the defects significantly compared to the cement mortar without CNTs. With the increase of the content of CNTs, the mechanical properties of cement mortars presented to be declined largely due to the agglomeration of CNTs.
基金Project(51102035)supported by the National Natural Science Foundation of China
文摘Functionalized graphene nano-sheets(FGN) of 0.01%-0.05%(mass fraction) were added to produce FGN-cement composites in the form of mortars. Flow properties, mechanical properties and microstructure of the cementitious material were then investigated. The results indicate that the addition of FGN decreases the fluidity slightly and improves mechanical properties of cement-based composites significantly. The highest strength is obtained with FGN content of 0.02% where the flexural strength and compressive strength at 28 days are 12.917 MPa and 52.42 MPa, respectively. Besides, scanning electron micrographs show that FGN can regulate formation of massive compact cross-linking structures and thermo gravimetric analysis indicates that FGN can accelerate the hydration reaction to increase the function of the composite effectively.
文摘This research focused on using the waste rubber powder as a kind of regenerate resources to improve the mechanical properties of cement mortar.The two kinds of hybrid modified rubber powder TRP and ATRP were prepared by sol-gel method and then used in cement mortar.The structures and properties of them were studied.It is shown that the nano Si-O-Si network is generated in TRP and ATRP networks and the hydrophilic group is grafted on the surface of ATRP.The mechanical properties of rubber-treated mortar(RTM) were tested and the microstructures of them were also studied.Compared to the mortars with unmodified rubber powders(RP),NaOH treated rubber powder(SRP) and coupling agent treated rubber powder(CRP),the RTM with ATRP has the highest compressive strength and flexural strength.The stress-strain curves shown that the peak of stress of RTM with ATRP is increased and indicated the higher compression deformation and toughness.It is found that the interfacial adhesion between the ATRP and cement mortar is increased distinctly by SEM,which results in enhanced ductility and mechanical properties of RTM with ATRP.
基金Funded by the National Natural Science Foundation of China(Nos.U1134206,51178230)the Technological Development Projects of China Railway Engineering Corporation(No.Z2013-038-3)
文摘Chemical admixtures are of paramount importance to the performance of modern cement based composites. In this paper, we performed a series of tests to investigate the effects of chemical admixtures on the cement asphalt mortar(CA mortar), i e, compressive strength, frost resistance, permeability, fatigue resistance, pore structure and microstructure. In particular, two types of chemical admixtures were tested, i e, defoamer(tributyl phosphate(TBP)) and polycarboxylate superplasticizer(PS). The results indicate that the addition of TBP and PS eliminates big bubbles and promotes small non-connected pores forming in matrix. Besides, an optimum dosage of TBP and PS may be determined with respect to the frost resistance, permeability and fatigue resistance of CA mortar. Further elaborative discussions are presented as well as experimental evidences from mercury intrusion porosimetry, scanning electron microscopy and energy dispersive spectroscopy.
文摘The epoxy resin polymer cement mortars with excellent performances were made up through modifying ordinary Portland cement with emulsified epoxy and micro fine slag.The microstructure of the epoxy resin polymer cement materials was studied and their hydration and hardening characteristics were discussed by means of modern analysis measures such as SEM,XRD and Hg intrusion micromeritics.The experimental results indicate that the series effects of water reducing,density,pozzolanicity,filling and solidification crosslinking through the action together with epoxy organism and micro fine slag endowed cement based materials with perfect performances.The main hydration products in the system are C S H gel and hydrated calcium aluminate.At later age,AFt can be in existence,and no Ca(OH) 2 is found.When epoxy resin is solidified,the organism is in a network structure.In the micro pore structure of hydrated cement with modified epoxy and fine slag,big harmful pores were fewer,more harmless abundant micro pores were and the possible pore radius was smaller than that of ordinary Portland cement.
基金Funded by the Foundation of Heilongjiang Department of Transport of China(2012-43)
文摘The polymeric admixture, the sodium-carboxymethylcellulose(CMC)/poly sodium p-styrene sulfonate(PSS)/poly vinyl acetate(PVAc) was synthesized and applied in cement mortars. The polymer was tested by FTIR and SEM, and the results indicate that the ideal molecular structure is synthesized. The effect of addition amount of polymeric admixture and water-to-cement ratio on mechanical properties of cement mortars was studied. The polymer-modified mortars under the optimum water cement ratio and optimum polymer cement ratio, the flexural strength of polymer-modified mortars are 1.45, 1.21, and 1.17 times higher than the plain cement mortar at age of 3, 7, and 28 d, respectively.The compressive strength of polymer-modified mortars at age of 3, 7, and 28 d are 1.55, 1.40, and 1.2941 times higher than that of the plain cement mortar,respectively. Scanning electron microscope(SEM), FTIR and TG were used to analyze the effect of polymer emulsion on cement hydration reaction. The results show that the polymer emulsion can promote the hydration reaction of cement.
基金Funded by the National Basic Research Program of China(973Project)(Nos.2009CB623200 and 2011CB013800)the National Natural Science Foundation of China(No.51178103)the Scientific Research Foundation of the Graduate School of Southeast University(YBJJ1113)
文摘In situ monitoring of the microstructure evolution of cement mortar in accelerated carbonation reaction for different carbonation ages was carried out by X-ray computed tomography (XCT). And the carbonation degrees of different time were measured by the volume fraction of uncarbonated and carbonated parts. Meanwhile, we presented a model for the carbonation of cement mortar by means of X-ray computed tomography (XCT). Based on the principles of chemical engineering processes, the reacted products become a solid inert ash layer. Finally, the model was validated with results of accelerated carbonation of cement mortar. The model is thus able to reasonably predict the carbonation ohenomena for accelerated conditions.
基金Funded by the National Natural Science Foundation of China (No. 50408016) the "863" High-Tech Research and Development Program of China (No. 2005AA332010)
文摘Mortar prisms were made with three different cementitious materials (with or without mineral admixture) plus 30% mass of limestone filler. After 28 days of curing in water at room temperature, the mortars were submerged in 2% magnesium sulfate solution at different temperatures (5℃, 20℃and alternate temperature between 5℃and 20℃) for a year. The appearance and strength development were measured on these immersed prisms at intervals, and samples selected from the surface of prisms were examined by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The results show that the influence of temperature on the resistance to sulfate attack of mortar is related to the binder compositions. A higher temperature leads to a quicker strength loss and appearance deterioration of the mortar without mineral admixture. For blended cements, a higher temperature is favorable for the pozzolanic reaction of mineral admixture and the overall deterioration of mortar is reduced with the increasing temperature. When the mineral admixture has a lower reactivity, such influence of temperature on the resistance to sulfate attack of mortar containing admixtures becomes greater. At the three different solution temperatures, two blended cements show significantly improved resistances to sulfate attack. After 1 year of exposure to magnesium sulfate solutions, the formation of thaumasite was checked in the OPC mortars at both 5℃and 20℃. It is concluded that the thaumasite formation is not limited to structures at low temperature (less than 15℃).
文摘The objective of this study is to analyze the effects of using surfactant(CTAB)and cellulose nanofibers(NFC)as an admixture in cement mortars.We examined composite properties as porosity,compression energy,thermal conductivity and hydration.The results showed that with the addition of 0.7%by weight of NFC per emulsion in the presence of a cationic surfactant(CTAB).The new material produced presented a dry porosity between 4.7%and 4.4%,compressive strength between 9.8 and 22.9 MPa,and thermal conductivity between 0.95 and 2.25 W·m^(−1)·K^(−1).Thus we show better mechanical and thermal performance than that traditional Portland cement mortar with a density similar.In addition,the mortar made by emulsion of ordinary portland cement,cellulose nanofiber and organophilic clay(OC)treated with cetyltrimethylammonium bromide(CTAB)obtained has good resistance under high temperature and water,as well as excellent thermal insulation performance under high temperature and humidity conditions.This study verified that the presence of NFC promotes hydration,leading to the production of more calcium silicate and portlandite gel.
基金Funded by the Science Project from Department of Communication of Hubei Province
文摘Influences of polypropylene (PP) fiber and styrene-butadiene rubber (SBR) polymer latex on the strength performance, abrasion resistance of cement mortar were studied. The experimental results show that the flexural strength, brittleness index (σF/σC) and abrasion resistance can be improved significantly by the addition of PP fiber and SBR polymer latex. The relationship between the flexural strength and abrasion resistance was analyzed, showing a good linear relationship between them. The reinforced mechanism of PP fiber and SBR polymer latex on cement mortar was analyzed by some microscopic tests. The test results show that the addition of SBR polymer latex has no significant influence on the cement hydration after 7 d curing. Adding SBR polymer latex into cement mortar can form a polymer transition layer in the interfaces of PP fiber and cement hydrates, which improves the bonding properties between the PP fiber and cement mortar matrix effectively.
基金Project(51479048) supported by National Natural Science Foundation of China
文摘Effects of strain rate and water-to-cement ratio on the dynamic compressive mechanical behavior of cement mortar are investigated by split Hopkinson pressure bar(SHPB) tests. 124 specimens are subjected to dynamic uniaxial compressive loadings.Strain rate sensitivity of the materials is measured in terms of failure modes, stress-strain curves, compressive strength, dynamic increase factor(DIF) and critical strain at peak stress. A significant change in the stress-strain response of the materials with each order of magnitude increase in strain rate is clearly seen from test results. The slope of the stress-strain curve after peak value for low water-to-cement ratio is steeper than that of high water-to-cement ratio mortar. The compressive strength increases with increasing strain rate. With increase in strain rate, the dynamic increase factor(DIF) increases. However, this increase in DIF with increase in strain rate does not appear to be a function of the water-to-cement ratio. The critical compressive strain increases with the strain rate.
基金Projects(52008003,52074009)supported by the National Natural Science Foundation of ChinaProject(201904a07020081)supported by the Key Research and Development Program Project of Anhui Province,ChinaProject(1908085QE213)supported by the Nature Science Foundation of Anhui Province,China。
文摘To investigate the static compressive properties and mechanical damage evolution of rubber cement-based materials(RCBMs) with dry-and wet-curing conditions, uniaxial compression and cyclic loading-unloading tests were carried out on rubber cement mortar(RCM). The mechanical properties of the uniaxial compression specimens cured at 95%(wet-curing) and 50%(dry-curing) relative humidities and cyclic loading-unloading specimens cured at wet-curing were analyzed. Under uniaxial compression, the peak stress loss ratio is higher for dry-curing than for wet-curing. The peak strain decreases with the increase of rubber content, and the peak strain increases with the decrease of curing humidity. Under cyclic loading-unloading, the variation trends of residual strain differences of the normal cement mortar and RCM at each cyclic level with the number of cycles are basically the same, but the failure modes are different. The analysis of the internal mesostructure by a scanning electron microscope(SEM) shows that initial damage is further enhanced by reducing curing humidity and adding rubber aggregate. The damage constitutive model based on strain equivalence principle and statistical theories was used to describe the uniaxial compression characteristics of RCM, and the law of mechanical damage evolution was predicted.
基金This work is supported by the National Natural Science Foundation of China(No.51709097).
文摘This study deals with the analysis of the detrimental effects of a“sulfate attack”on cement mortar for different dry-wet cycles.The mass loss,tensile strength,and gas permeability coefficient were determined and analyzed under different exposure conditions.At the same time,nitrogen adsorption(NAD),scanning electron microscopy(SEM),and X-ray diffraction(XRD)techniques were used to analyze the corresponding variations in the microstructure and the corrosion products.The results show that certain properties of the cement mortar evolve differently according to the durations of the dry-wet cycles and that some damage is caused to the mortars in aqueous solution.The pores fill with corrosion products,increasing the mortar specimen mass and tensile strength while reducing the permeability coefficient and pore size distribution.As corrosion proceeds,the crystallization pressure of the corrosion products increases,resulting in a 16%reduction in tensile strength from the initial value and a 2.6-factor increase in the permeability coefficient,indicating sensitivity to sulfate attack damage.Furthermore,the main corrosion products generated in the experiment are gypsum and ettringite.Application of osmotic pressure and extension of the immersion time can accelerate the erosion process.
基金Project(LY13E080021) supported by the Natural Science Foundation of Zhejiang Province,ChinaProject(2011A610072) supported by the Ningbo Municipal Natural Science Foundation,ChinaProject(XKL14D2063) supported by Subject Program of Ningbo University,China
文摘To investigate the mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions, uniaxial compression test and ultrasonic test were performed. Test results show that the relative dynamic elastic modulus, the mass variation,and the compressive strength of cement mortar increase first, and then decrease with increasing erosion time in sodium sulfate and sodium chloride solutions. The relative dynamic elastic moduli and the compressive strengths of cement mortars with water/cement ratios of 0.55 and 0.65 in sodium sulfate solution are lower than those in sodium chloride solution with the same concentration at the420 th day of immersion. The compressive strength of cement mortar with water/cement ratio of 0.65 is more sensitive to strain rate than that with water/cement ratio of 0.55. In addition, the strain-rate sensitivity of compressive strength of cement mortar will increase under attacks of sodium sulfate or sodium chloride solution.
文摘The aim of this work was to examine the microstructural changes of CEM I standardised cement mortar caused by accelerated carbonation (20% CO2 concentration) using porosity accessible to water and nitrogen adsorption. The conflicted results obtained by these two techniques showed the differences in porous domains explored, while the pore size distributions calculated from nitrogen adsorption provided evolution of the micro and meso pores during carbonation. The porosity accessible to water showed changes in all three porous domains: macro, meso and micro pores. This is because of difference in the molecular sizes between water and nitrogen molecules. Although these two techniques are different, they help to complementarily evaluate the effects of carbonation. The results also indicated the influence of type of cement on microstructural evolutions and the correlation between variations of mesopores volume and specific surface area. Changes in microstructure induce changes in macroscopic properties that we also examined such as the solid phase volume using helium pycnometry, the gas permeability, the thermal conductivity, the thermal diffusivity, and the longitudinal and transverse ultrasonic velocities.