The fractured surrounding rocks of roadways pose major challenges to safe mining.Grouting has often been used to reinforce the surrounding rocks to mitigate the safety risks associated with fractured rocks.The aim of ...The fractured surrounding rocks of roadways pose major challenges to safe mining.Grouting has often been used to reinforce the surrounding rocks to mitigate the safety risks associated with fractured rocks.The aim of this study is to develop highly efficient composite ultrafine cement(CUC)grouts to reinforce the roadway in fractured surrounding rocks.The materials used are ultrafine cement(UC),ultrafine fly ash(UF),ultrafine slag(US),and additives(superplasticizer[SUP],aluminate ultrafine expansion agent[AUA],gypsum,and retarder).The fluidity,bleeding,shrinkage,setting time,chemical composition,microstructure,degree of hydration,and mechanical property of grouting materials were evaluated in this study.Also,a suitable and effective CUC grout mixture was used to reinforce the roadway in the fractured surrounding rock.The results have shown that the addition of UF and US reduces the plastic viscosity of CUC,and the best fluidity can be obtained by adding 40%UF and 10%US.Since UC and UF particles are small,the pozzolanic effect of UF promotes the hydration reaction,which is conductive to the stability of CUC grouts.In addition,fine particles of UC,UF,and US can effectively fill the pores,while the volumetric expansion of AUA and gypsum decreases the pores and thus affects the microstructure of the solidified grout.The compressive test results have shown that the addition of specific amounts of UF and US can ameliorate the mechanical properties of CUC grouts.Finally,the CUC22‐8 grout was used to reinforce the No.20322 belt roadway.The results of numerical simulation and field monitoring have indicated that grouting can efficaciously reinforce the surrounding rock of the roadway.In this research,high‐performance CUC grouts were developed for surrounding rock reinforcement of underground engineering by utilizing UC and some additives.展开更多
Grouting is an effective method to improve the integrity and stability of fractured rocks that surround deep roadways.After years of research and practice,various theories and a complete set of grouting technologies f...Grouting is an effective method to improve the integrity and stability of fractured rocks that surround deep roadways.After years of research and practice,various theories and a complete set of grouting technologies for deep roadways with fractured rocks have been developed and are widely applied in Chinese coal mining production.This paper systematically summarizes and analyzes the research results concerning the theory,design,materials,processes,and equipment for the grouting and reinforcement of fractured rocks surrounding deep roadways.Specifically,in terms of grouting methods,pregrouting,groutingwhile-excavation,and postgrouting methods are explored;in terms of grouting theory,backfill grouting,compaction grouting,infiltration grouting,and fracture grouting theories are studied.In addition,this paper also studies grouting borehole arrangement,water-cement ratio,grouting pressure,grouting volume,grout diffusion radius,and other grouting parameters and their determination methods.On this basis,this paper explores the physical and mechanical properties of organic and organic-inorganic composite grouting materials,and assess grouting reinforcement quality testing methods and instruments.Taken as the field cases,the application of pregrouting in front of heading faces,groutingwhile-excavation,and postgrouting in the Kouzidong coal mine are then introduced,and the effects of the grouting reinforcements are evaluated.This paper proposes a development direction for grouting technology based on problems existing in the grouting reinforcement of fractured rocks surrounding deep roadways.展开更多
Improvement of the fluidity and setting time of grouting materials has been recognized as an effective approach of seepage prevention in foundation works, and it is quite common to be used for handling severe leakages...Improvement of the fluidity and setting time of grouting materials has been recognized as an effective approach of seepage prevention in foundation works, and it is quite common to be used for handling severe leakages in complex ground conditions, such as loose, broken and fully fissured stratum. For the purposed of better meeting the engineering requirements, experimental studies were conducted in this study with focus on the nanocomposite grouting materials and the related controlled grouting technology. As compared with the commonly used silicate-sulpho-aluminate composite cement, which is characterized by relatively poor rheological property, quick setting time and low strength, the most suitable nano-material with proper reactants were selected intentionally to improve the mentioned attributes of composite cement. Due to the setting time and strength of the targeted cement slurry behaving with poor performance of harmonization to engineering construction problems, hydration synergistic effect of these composites were investigated in our experiments. Results showed that the properties of grouting materials, including initial fluidity, setting time, ideal right-angle thickening, and early strength and late strength were sufficient to produce an expected grouting application. It is therefore advocated that the refined grouting material could provide a better solution to fix grouting problems in complex ground cementing operations.展开更多
Main performance of the cement grouting materials made up by Portland cement(PC) and sulphoaluminate cement(SAC) was investigated in this program, a kind of expanding agent(EA) which was mainly constituted by me...Main performance of the cement grouting materials made up by Portland cement(PC) and sulphoaluminate cement(SAC) was investigated in this program, a kind of expanding agent(EA) which was mainly constituted by metakaolin and alunite was utilized for the compensation of the shrinkage, the hydration products and micro structure of the grouting materials were researched by X-ray diffraction(XRD) and scanning electron microscopy(SEM). The results showed that a high expansion rate of the grouting materials could be reached as the expanding agent mixed in 6% of PC mass; the addition of SAC in the S2(PC:SAC:EA=34:6:2.25) brought a further improvement of the expansion rate of the grouting materials, the analysis of XRD and SEM showed that due to the reaction of expanding agent and SAC in the grouting materials, more ettringite crystal was generated, which resulted in a higher early strength, the addition of SAC played an expansion and strength reinforcement role in the grouting materials.展开更多
The material properties of surface and powder, rheological property, and mineral composition were investigated by means of SEM, XRD, Malvern laser granulometer and rotary, viscometer. The influence of a admixture on u...The material properties of surface and powder, rheological property, and mineral composition were investigated by means of SEM, XRD, Malvern laser granulometer and rotary, viscometer. The influence of a admixture on ultra-fine cement rheological properties and its mechanism, were studied in material theories. The results show that the ultra-fine fly ash has a higher zeta potential, and improves flowability of ultra-fine cement paste, decreases flowability loss as time prolonging, improves compatibility between superplasticizers and cement because of the electrostatic repulsion, ball bearing effect, filling and dispersing effect of admixtures and delay-releasing effect of superplasticizers.展开更多
This article studies the influence of the fineness of cement, fly ash(FA), its composite admixture and the amount and way mixed with superplasticizer on the rheological properties of micro fine cement(MC). By means of...This article studies the influence of the fineness of cement, fly ash(FA), its composite admixture and the amount and way mixed with superplasticizer on the rheological properties of micro fine cement(MC). By means of modern instruments and technologies (such as XRD, SEM, laser granulometer and superficial potential apparatus etc.), the article studies the mineral compositions, the appearance character of grains, particle size distribution and superficial potential of FA and its composite materials. And through that, the reducing mechanism of FA is thoroughly analyzed. The study shows that FA and its composite admixture are excellent components which can effectively improve the rheological properties of micro fine cement, and that the superplasticizer has a saturation point and the mixing way of it has a great influence on the rheological properties.展开更多
The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous...The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous deep mining areas characterized by soft rock roadways,where it has demonstrated remarkable control results.This article systematically explores the evolution of grouted bolting,covering its theoretical foundations,design methods,materials,construction processes,monitoring measures,and methods for assessing its effectiveness.The overview encompassed several key elements,delving into anchoring theory and grouting reinforcement theory.The new principle of high pretensioned high-pressure splitting grouted bolting collaborative active control is introduced.A fresh method for dynamic information design is also highlighted.The discussion touches on both conventional grouting rock bolts and cable bolts,as well as innovative grouted rock bolts and cables characterized by their high pretension,strength,and sealing hole pressure.An examination of the merits and demerits of standard inorganic and organic grouting materials versus the new inorganic–organic composite materials,including their specific application conditions,was conducted.Additionally,the article presents various methods and instruments to assess the support effect of grouting rock bolts,cable bolts,and grouting reinforcement.Furthermore,it provides a foundation for understanding the factors influencing decisions on grouted bolting timing,the sequence of grouting,the pressure applied,the volume of grout used,and the strategic arrangement of grouted rock bolts and cable bolts.The application of the high pretensioned high-pressure splitting grouted bolting collaborative control technology in a typical kilometer-deep soft rock mine in China—the soft coal seam and soft rock roadway in the Kouzidong coal mine,Huainan coal mining area,was introduced.Finally,the existing problems in grouted bolting control technology for deep soft rock roadways are analyzed,and the future development trend of grouted bolting control technology is anticipated.展开更多
The physical and mechanical properties of wet-milling ultra-fine grouting cement were studied,and its microstructure was observed through modern instrumentation analysis such as scanning electronic microscopy(SEM),X-r...The physical and mechanical properties of wet-milling ultra-fine grouting cement were studied,and its microstructure was observed through modern instrumentation analysis such as scanning electronic microscopy(SEM),X-ray diffraction and Hg-intrusion micromeritics.The experimental results indicate that wet-milling ultra-fine cement possesses high rheological properties and groutability.It can be filled densely in cracks of rock and hydrate fully,which may endow hydrated cement with high mechanical strength.Main hydration products of wet-milling ultra-fine cement are poorly crystalline C-S-H(Ⅰ),acicular AFt and plank-shape Ca(OH)_2.The dense crystal-network structure can be formed in the rock gaps filled with cement paste,but some weak regions exist owing to Ca(OH)_2.The features of micro-pore structure of hydrated wet-milling ultra-fine cement are few big harmful pores,abundant harmless micro pores and little most possible pore radius.展开更多
The performances of dry grinding fine cement (DFC) in grouting procedure were experimentally studied.The measurement of its fineness and simulated test for injectability showed that this DFC could be used to inject r...The performances of dry grinding fine cement (DFC) in grouting procedure were experimentally studied.The measurement of its fineness and simulated test for injectability showed that this DFC could be used to inject rock mass with micro fissure.In order to improve the grouting quality,the water cement ratio and discarding time of slurry should be controlled precisely.If the water cement ratio is over 2∶1 in slurry that is made from DFC,it is not suitable to grout.Finally,the influence of different mixing times on strength of hydrated cement made from the DFC is explained by microstructure analysis with SEM.展开更多
Permeation grouting with cement agent is one of the most widely used methods in various geotechnical projects,such as increasing bearing capacity,controlling deformation,and reducing permeability of soils.Due to air p...Permeation grouting with cement agent is one of the most widely used methods in various geotechnical projects,such as increasing bearing capacity,controlling deformation,and reducing permeability of soils.Due to air pollution induced during cement production as well as its high energy consumption,the use of supplementary materials to replace in part cement can be attractive.Natural zeolite(NZ),as an environmentally friendly material,is an alternative to reduce cement consumption.In the present study,a series of consolidated undrained(CU)triaxial tests on loose sandy soil(with relative density Dr=30%)grouted with cementitious materials(zeolite and cement)having cement replacement with zeolite content(Z)of 0%,10%,30%,50%,70%and 90%,and water to cementitious material ratios(W/CM)of 3,5 and 7 has been conducted.The results indicated that the peak deviatoric stress(qmax)of the grouted specimens increased with Z up to 50%(Z50)and then decreased.The strength of the grouted specimens reduced with increasing W/CM of the grouts from 3 to 7.In addition,by increasing the stress applied on the grouted specimens from yield stress(qy)to the maximum stress(qmax),due to the bond breakage,the effect of cohesion(c’)on the shear strength reduced gradually,while the effect of friction angle(φ’)increased.Furthermore,in some grouted specimens,high confining pressure caused breakage of the cemented bonds and reduced their expected strength.展开更多
Grout injection is used for sealing or strengthening the ground in order to prevent water entrance or any failure after excavation.There are many methods of grouting.Permeation grouting is one of the most common types...Grout injection is used for sealing or strengthening the ground in order to prevent water entrance or any failure after excavation.There are many methods of grouting.Permeation grouting is one of the most common types in which the grout material is injected to the pore spaces of the ground.In grouting operations,the grout quality is important to achieve the best results.There are four main characteristics for a grout mixture including bleeding,setting time,strength,and viscosity.In this paper,we try to build some efficient grouting mixtures with different water to cement ratios considering these characteristics.The ingredients of grout mixtures built in this study are cement,water,bentonite,and some chemical additives such as sodium silicate,sodium carbonate,and triethanolamine(TEA).The grout mixtures are prepared for both of the sealing and strengthening purposes for a structural project.Effect of each abovementioned ingredient is profoundly investigated.Since each ingredient may have positive or negative aspect,an optimization of appropriate amount of each ingredient is determined.The optimization is based on 200 grout mixture samples with different percentages of ingredients.Finally,some of these grout mixtures are chosen for the introduced project.It should be mentioned that grouting operations depend on various factors such as pressure of injection,ground structure and grain size of soils.However,quality of a grout can be helpful to make an injection easier and reasonable.For example,during the injection,a wrong estimated setting time can destroy the injected grout by washing the grout or setting early which prevents grouting.This paper tries to show some tests in easy way to achieve a desirable sample of grout.展开更多
The effects of aggressive peat nature (pH) on the strength of peat treated by cement and cement-sodium silicate grout were investigated by evaluating the changes in unconfined compressive strength,moisture content,and...The effects of aggressive peat nature (pH) on the strength of peat treated by cement and cement-sodium silicate grout were investigated by evaluating the changes in unconfined compressive strength,moisture content,and scanning electron microscopy (SEM) of samples with time in different pH media.The results indicate that peats treated by cement-silicate have higher strength than peats treated by cement,due to an increase in pH value of the media.Furthermore,cement and cement-silicate are highly effective in reducing the moisture content and void ratio of the treated peats.The microstructures of treated peats support the laboratory test results.展开更多
The simplified mechanical model and finite element model are established on the basis of the measured results and analysis of the grouting pile deformation monitoring,surface horizontal displacement and vertical displ...The simplified mechanical model and finite element model are established on the basis of the measured results and analysis of the grouting pile deformation monitoring,surface horizontal displacement and vertical displacement monitoring,deep horizontal displacement(inclinometer)monitoring,soil pressure monitoring and seepage pressure monitoring in the lower reaches of Wuan River regulation project in Shishi,Fujian Province.The mechanical behavior and deformation performance of mould-bag pile retaining wall formed after controlled cement grouting in the silty stratum of the test section are analyzed and compared.The results show that the use of controlled cement grouting mould-bag pile technology is to strengthen the soft stratum for sealing water and reinforcement,so that it can rock into a retaining wall,which can both retain soil and seal water with excellent effect.The control of cement grouting technology not only makes the soft soil rock in the range of retaining wall of mould-bag pile,but also makes a wide range of soil around the mould-bag pile squeeze and embed to compaction;and its cohesion and internal friction angle increased,so as to achieve the purpose of reducing soil pressure and improving mechanical and deformation properties of retaining wall.展开更多
Proper room and pillar sizes are both critical factors for safe mining and high ore recovery rate in shrinkage stoping mining of underground metal mines. The rock masses of Tangdan copper mine of China are fractured, ...Proper room and pillar sizes are both critical factors for safe mining and high ore recovery rate in shrinkage stoping mining of underground metal mines. The rock masses of Tangdan copper mine of China are fractured, which needs much reinforcement and support prior to mining. Cement-sodium silicate grout technology was selected, then its related parameters such as grout pressure, diffusion radius and time were calculated and proposed. In order to test the effect of the pressured grout in the fractured No.4 ore block, field experiments were conducted. To optimize stoping configuration, three-dimensional numerical simulation with ANSYS and FLAC 3 D softwares was proposed. The results show that the drilling porosity and mechanical properties of the rock masses are increased obviously. After grout, ore recovery rate is increased by 10.2 % employing the newly designed stoping configuration compared with the previous. Last, analyzed from the surface movements, roof subsidence and the maximum principal stress of the pillars, the mining safety is probable of being ensured.展开更多
Fractured, very permeable rock hosting repositories for radioactive waste will require grouting. New grout types of possible use where long-term performance is needed should have a small amount of cement for minimizin...Fractured, very permeable rock hosting repositories for radioactive waste will require grouting. New grout types of possible use where long-term performance is needed should have a small amount of cement for minimizing the increase in porosity that will follow from the ultimate dissolution and erosion of this component. They have to be low-viscous and gain strength early after injection and packing theory can assist designers in selecting suitable proportions of various grout components. Optimum particle packing means that the porosity is at minimum and that the amount of cement paste needed to fill the voids between aggregate particles is very small. Low porosity and microstructural stability must be guaranteed for long periods of time. Organic additives for reaching high fluidity cannot be used since they can give off colloids that carry released radionuclides and talc can be an alternative superplasticizer. Low-pH cement reacts with talc to give high strength with time while Portland cement gives early but limited strengthening. The clay mineral palygorskite can be used for early gelation because of its thixotropic properties. Once forced into the rock fractures or channels in soil it stiffens and serves as a filter that prevents fine particles to migrate through it be lost. However, its hydrophilic potential is too high to give the grout a high density and high strength. According to the experiments carried out, most of the investigated grouts are injectable in fractures with apertures down to 100 μm.展开更多
This study is aimed at the thermal analysis of sealant mortar (usually a mixtures of bentonite and cemem with addition of sand) used in geothermal cooling and heating. In particular, thermal conductivity and diffusi...This study is aimed at the thermal analysis of sealant mortar (usually a mixtures of bentonite and cemem with addition of sand) used in geothermal cooling and heating. In particular, thermal conductivity and diffusivity measurements were performed on differem sealant mixtures by using Hot Disk thermal constants analyzer in order to identify the interesting thermal properties of grouting materials. The grouting materials that we considered are of porous nature and, if used in the presence of groundwater, have different levels of imbibitions. It is important to know the thermal behavior of these materials at different water content. A first set of measurements was performed on a not-tinted material at room temperature; then the samples were led to saturation conditions by contact capillary imbibitions with a cotton wool layer moistened in water. The determination of thermal conductivity in these test conditions appears to be critical compared to the measuremems on non-timed sample. The thermal conductivity tests have revealed how the thermal behavior of the samples analyzed is essentially determined by the density and water content of the material: in fact, the thermal conductivity increases of two to three times the value of the not-tinted material.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(grant No.52074169,No.51704280)the China Postdoctoral Science Foundation(No.2023M732109)the Opening Foundation of Shandong Key Laboratory of Civil Engineering Disaster Prevention and Mitigation(No.CDPM2021FK02).
文摘The fractured surrounding rocks of roadways pose major challenges to safe mining.Grouting has often been used to reinforce the surrounding rocks to mitigate the safety risks associated with fractured rocks.The aim of this study is to develop highly efficient composite ultrafine cement(CUC)grouts to reinforce the roadway in fractured surrounding rocks.The materials used are ultrafine cement(UC),ultrafine fly ash(UF),ultrafine slag(US),and additives(superplasticizer[SUP],aluminate ultrafine expansion agent[AUA],gypsum,and retarder).The fluidity,bleeding,shrinkage,setting time,chemical composition,microstructure,degree of hydration,and mechanical property of grouting materials were evaluated in this study.Also,a suitable and effective CUC grout mixture was used to reinforce the roadway in the fractured surrounding rock.The results have shown that the addition of UF and US reduces the plastic viscosity of CUC,and the best fluidity can be obtained by adding 40%UF and 10%US.Since UC and UF particles are small,the pozzolanic effect of UF promotes the hydration reaction,which is conductive to the stability of CUC grouts.In addition,fine particles of UC,UF,and US can effectively fill the pores,while the volumetric expansion of AUA and gypsum decreases the pores and thus affects the microstructure of the solidified grout.The compressive test results have shown that the addition of specific amounts of UF and US can ameliorate the mechanical properties of CUC grouts.Finally,the CUC22‐8 grout was used to reinforce the No.20322 belt roadway.The results of numerical simulation and field monitoring have indicated that grouting can efficaciously reinforce the surrounding rock of the roadway.In this research,high‐performance CUC grouts were developed for surrounding rock reinforcement of underground engineering by utilizing UC and some additives.
基金Innovation and Entrepreneurship Funds of Tiandi Science&Technology Co.Ltd.,Grant/Award Number:2022-2-TD-MS013。
文摘Grouting is an effective method to improve the integrity and stability of fractured rocks that surround deep roadways.After years of research and practice,various theories and a complete set of grouting technologies for deep roadways with fractured rocks have been developed and are widely applied in Chinese coal mining production.This paper systematically summarizes and analyzes the research results concerning the theory,design,materials,processes,and equipment for the grouting and reinforcement of fractured rocks surrounding deep roadways.Specifically,in terms of grouting methods,pregrouting,groutingwhile-excavation,and postgrouting methods are explored;in terms of grouting theory,backfill grouting,compaction grouting,infiltration grouting,and fracture grouting theories are studied.In addition,this paper also studies grouting borehole arrangement,water-cement ratio,grouting pressure,grouting volume,grout diffusion radius,and other grouting parameters and their determination methods.On this basis,this paper explores the physical and mechanical properties of organic and organic-inorganic composite grouting materials,and assess grouting reinforcement quality testing methods and instruments.Taken as the field cases,the application of pregrouting in front of heading faces,groutingwhile-excavation,and postgrouting in the Kouzidong coal mine are then introduced,and the effects of the grouting reinforcements are evaluated.This paper proposes a development direction for grouting technology based on problems existing in the grouting reinforcement of fractured rocks surrounding deep roadways.
基金funded by National Natural Science of China (Grant Nos.41672362)Key Projects of Sichuan Provincial Department of Education (Grant No.16ZA0099)the State Key Laboratory of Geohazard Prevention & Geoenvironment Protection (Grant No.SKLGP2017Z011)
文摘Improvement of the fluidity and setting time of grouting materials has been recognized as an effective approach of seepage prevention in foundation works, and it is quite common to be used for handling severe leakages in complex ground conditions, such as loose, broken and fully fissured stratum. For the purposed of better meeting the engineering requirements, experimental studies were conducted in this study with focus on the nanocomposite grouting materials and the related controlled grouting technology. As compared with the commonly used silicate-sulpho-aluminate composite cement, which is characterized by relatively poor rheological property, quick setting time and low strength, the most suitable nano-material with proper reactants were selected intentionally to improve the mentioned attributes of composite cement. Due to the setting time and strength of the targeted cement slurry behaving with poor performance of harmonization to engineering construction problems, hydration synergistic effect of these composites were investigated in our experiments. Results showed that the properties of grouting materials, including initial fluidity, setting time, ideal right-angle thickening, and early strength and late strength were sufficient to produce an expected grouting application. It is therefore advocated that the refined grouting material could provide a better solution to fix grouting problems in complex ground cementing operations.
基金Funded by the National Key Technology R&D Program in the12th Five Year Plan of China(No.2011BAE14B06)the National High Technology ResearchDevelopment Program of China(No.2015AA034701)
文摘Main performance of the cement grouting materials made up by Portland cement(PC) and sulphoaluminate cement(SAC) was investigated in this program, a kind of expanding agent(EA) which was mainly constituted by metakaolin and alunite was utilized for the compensation of the shrinkage, the hydration products and micro structure of the grouting materials were researched by X-ray diffraction(XRD) and scanning electron microscopy(SEM). The results showed that a high expansion rate of the grouting materials could be reached as the expanding agent mixed in 6% of PC mass; the addition of SAC in the S2(PC:SAC:EA=34:6:2.25) brought a further improvement of the expansion rate of the grouting materials, the analysis of XRD and SEM showed that due to the reaction of expanding agent and SAC in the grouting materials, more ettringite crystal was generated, which resulted in a higher early strength, the addition of SAC played an expansion and strength reinforcement role in the grouting materials.
基金Funded by the Science Foundation of the Science and Technology Department of Hubei Province(No.200029031).
文摘The material properties of surface and powder, rheological property, and mineral composition were investigated by means of SEM, XRD, Malvern laser granulometer and rotary, viscometer. The influence of a admixture on ultra-fine cement rheological properties and its mechanism, were studied in material theories. The results show that the ultra-fine fly ash has a higher zeta potential, and improves flowability of ultra-fine cement paste, decreases flowability loss as time prolonging, improves compatibility between superplasticizers and cement because of the electrostatic repulsion, ball bearing effect, filling and dispersing effect of admixtures and delay-releasing effect of superplasticizers.
文摘This article studies the influence of the fineness of cement, fly ash(FA), its composite admixture and the amount and way mixed with superplasticizer on the rheological properties of micro fine cement(MC). By means of modern instruments and technologies (such as XRD, SEM, laser granulometer and superficial potential apparatus etc.), the article studies the mineral compositions, the appearance character of grains, particle size distribution and superficial potential of FA and its composite materials. And through that, the reducing mechanism of FA is thoroughly analyzed. The study shows that FA and its composite admixture are excellent components which can effectively improve the rheological properties of micro fine cement, and that the superplasticizer has a saturation point and the mixing way of it has a great influence on the rheological properties.
基金the National Natural Science Foundation of China(Nos.52304141 and 52074154)。
文摘The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous deep mining areas characterized by soft rock roadways,where it has demonstrated remarkable control results.This article systematically explores the evolution of grouted bolting,covering its theoretical foundations,design methods,materials,construction processes,monitoring measures,and methods for assessing its effectiveness.The overview encompassed several key elements,delving into anchoring theory and grouting reinforcement theory.The new principle of high pretensioned high-pressure splitting grouted bolting collaborative active control is introduced.A fresh method for dynamic information design is also highlighted.The discussion touches on both conventional grouting rock bolts and cable bolts,as well as innovative grouted rock bolts and cables characterized by their high pretension,strength,and sealing hole pressure.An examination of the merits and demerits of standard inorganic and organic grouting materials versus the new inorganic–organic composite materials,including their specific application conditions,was conducted.Additionally,the article presents various methods and instruments to assess the support effect of grouting rock bolts,cable bolts,and grouting reinforcement.Furthermore,it provides a foundation for understanding the factors influencing decisions on grouted bolting timing,the sequence of grouting,the pressure applied,the volume of grout used,and the strategic arrangement of grouted rock bolts and cable bolts.The application of the high pretensioned high-pressure splitting grouted bolting collaborative control technology in a typical kilometer-deep soft rock mine in China—the soft coal seam and soft rock roadway in the Kouzidong coal mine,Huainan coal mining area,was introduced.Finally,the existing problems in grouted bolting control technology for deep soft rock roadways are analyzed,and the future development trend of grouted bolting control technology is anticipated.
文摘The physical and mechanical properties of wet-milling ultra-fine grouting cement were studied,and its microstructure was observed through modern instrumentation analysis such as scanning electronic microscopy(SEM),X-ray diffraction and Hg-intrusion micromeritics.The experimental results indicate that wet-milling ultra-fine cement possesses high rheological properties and groutability.It can be filled densely in cracks of rock and hydrate fully,which may endow hydrated cement with high mechanical strength.Main hydration products of wet-milling ultra-fine cement are poorly crystalline C-S-H(Ⅰ),acicular AFt and plank-shape Ca(OH)_2.The dense crystal-network structure can be formed in the rock gaps filled with cement paste,but some weak regions exist owing to Ca(OH)_2.The features of micro-pore structure of hydrated wet-milling ultra-fine cement are few big harmful pores,abundant harmless micro pores and little most possible pore radius.
文摘The performances of dry grinding fine cement (DFC) in grouting procedure were experimentally studied.The measurement of its fineness and simulated test for injectability showed that this DFC could be used to inject rock mass with micro fissure.In order to improve the grouting quality,the water cement ratio and discarding time of slurry should be controlled precisely.If the water cement ratio is over 2∶1 in slurry that is made from DFC,it is not suitable to grout.Finally,the influence of different mixing times on strength of hydrated cement made from the DFC is explained by microstructure analysis with SEM.
文摘Permeation grouting with cement agent is one of the most widely used methods in various geotechnical projects,such as increasing bearing capacity,controlling deformation,and reducing permeability of soils.Due to air pollution induced during cement production as well as its high energy consumption,the use of supplementary materials to replace in part cement can be attractive.Natural zeolite(NZ),as an environmentally friendly material,is an alternative to reduce cement consumption.In the present study,a series of consolidated undrained(CU)triaxial tests on loose sandy soil(with relative density Dr=30%)grouted with cementitious materials(zeolite and cement)having cement replacement with zeolite content(Z)of 0%,10%,30%,50%,70%and 90%,and water to cementitious material ratios(W/CM)of 3,5 and 7 has been conducted.The results indicated that the peak deviatoric stress(qmax)of the grouted specimens increased with Z up to 50%(Z50)and then decreased.The strength of the grouted specimens reduced with increasing W/CM of the grouts from 3 to 7.In addition,by increasing the stress applied on the grouted specimens from yield stress(qy)to the maximum stress(qmax),due to the bond breakage,the effect of cohesion(c’)on the shear strength reduced gradually,while the effect of friction angle(φ’)increased.Furthermore,in some grouted specimens,high confining pressure caused breakage of the cemented bonds and reduced their expected strength.
文摘Grout injection is used for sealing or strengthening the ground in order to prevent water entrance or any failure after excavation.There are many methods of grouting.Permeation grouting is one of the most common types in which the grout material is injected to the pore spaces of the ground.In grouting operations,the grout quality is important to achieve the best results.There are four main characteristics for a grout mixture including bleeding,setting time,strength,and viscosity.In this paper,we try to build some efficient grouting mixtures with different water to cement ratios considering these characteristics.The ingredients of grout mixtures built in this study are cement,water,bentonite,and some chemical additives such as sodium silicate,sodium carbonate,and triethanolamine(TEA).The grout mixtures are prepared for both of the sealing and strengthening purposes for a structural project.Effect of each abovementioned ingredient is profoundly investigated.Since each ingredient may have positive or negative aspect,an optimization of appropriate amount of each ingredient is determined.The optimization is based on 200 grout mixture samples with different percentages of ingredients.Finally,some of these grout mixtures are chosen for the introduced project.It should be mentioned that grouting operations depend on various factors such as pressure of injection,ground structure and grain size of soils.However,quality of a grout can be helpful to make an injection easier and reasonable.For example,during the injection,a wrong estimated setting time can destroy the injected grout by washing the grout or setting early which prevents grouting.This paper tries to show some tests in easy way to achieve a desirable sample of grout.
基金the Ministry of Science,Technology Innovation,Malaysia (Project No.03-01-04-SF0889) for the financial support of this research
文摘The effects of aggressive peat nature (pH) on the strength of peat treated by cement and cement-sodium silicate grout were investigated by evaluating the changes in unconfined compressive strength,moisture content,and scanning electron microscopy (SEM) of samples with time in different pH media.The results indicate that peats treated by cement-silicate have higher strength than peats treated by cement,due to an increase in pH value of the media.Furthermore,cement and cement-silicate are highly effective in reducing the moisture content and void ratio of the treated peats.The microstructures of treated peats support the laboratory test results.
基金The work is supported by the National Natural Science Foundation of China(No.51578253)Scientific and Technological Planning Project of Xiamen City(Nos.3502Z20172011 and 3502Z20172014)+1 种基金Scientific and Technological Planning Project of Quanzhou City(No.2018C083R)Reform study of graduate education and teaching of Huaqiao University in 2018(No.18YJG55).
文摘The simplified mechanical model and finite element model are established on the basis of the measured results and analysis of the grouting pile deformation monitoring,surface horizontal displacement and vertical displacement monitoring,deep horizontal displacement(inclinometer)monitoring,soil pressure monitoring and seepage pressure monitoring in the lower reaches of Wuan River regulation project in Shishi,Fujian Province.The mechanical behavior and deformation performance of mould-bag pile retaining wall formed after controlled cement grouting in the silty stratum of the test section are analyzed and compared.The results show that the use of controlled cement grouting mould-bag pile technology is to strengthen the soft stratum for sealing water and reinforcement,so that it can rock into a retaining wall,which can both retain soil and seal water with excellent effect.The control of cement grouting technology not only makes the soft soil rock in the range of retaining wall of mould-bag pile,but also makes a wide range of soil around the mould-bag pile squeeze and embed to compaction;and its cohesion and internal friction angle increased,so as to achieve the purpose of reducing soil pressure and improving mechanical and deformation properties of retaining wall.
基金Projects(51374034,51674012) supported by the National Natural Science Foundation of ChinaProject(2013BAB02B05) supported by the China National Science and Technology Support Program during the 12th Five-Year Plan Period
文摘Proper room and pillar sizes are both critical factors for safe mining and high ore recovery rate in shrinkage stoping mining of underground metal mines. The rock masses of Tangdan copper mine of China are fractured, which needs much reinforcement and support prior to mining. Cement-sodium silicate grout technology was selected, then its related parameters such as grout pressure, diffusion radius and time were calculated and proposed. In order to test the effect of the pressured grout in the fractured No.4 ore block, field experiments were conducted. To optimize stoping configuration, three-dimensional numerical simulation with ANSYS and FLAC 3 D softwares was proposed. The results show that the drilling porosity and mechanical properties of the rock masses are increased obviously. After grout, ore recovery rate is increased by 10.2 % employing the newly designed stoping configuration compared with the previous. Last, analyzed from the surface movements, roof subsidence and the maximum principal stress of the pillars, the mining safety is probable of being ensured.
文摘Fractured, very permeable rock hosting repositories for radioactive waste will require grouting. New grout types of possible use where long-term performance is needed should have a small amount of cement for minimizing the increase in porosity that will follow from the ultimate dissolution and erosion of this component. They have to be low-viscous and gain strength early after injection and packing theory can assist designers in selecting suitable proportions of various grout components. Optimum particle packing means that the porosity is at minimum and that the amount of cement paste needed to fill the voids between aggregate particles is very small. Low porosity and microstructural stability must be guaranteed for long periods of time. Organic additives for reaching high fluidity cannot be used since they can give off colloids that carry released radionuclides and talc can be an alternative superplasticizer. Low-pH cement reacts with talc to give high strength with time while Portland cement gives early but limited strengthening. The clay mineral palygorskite can be used for early gelation because of its thixotropic properties. Once forced into the rock fractures or channels in soil it stiffens and serves as a filter that prevents fine particles to migrate through it be lost. However, its hydrophilic potential is too high to give the grout a high density and high strength. According to the experiments carried out, most of the investigated grouts are injectable in fractures with apertures down to 100 μm.
文摘This study is aimed at the thermal analysis of sealant mortar (usually a mixtures of bentonite and cemem with addition of sand) used in geothermal cooling and heating. In particular, thermal conductivity and diffusivity measurements were performed on differem sealant mixtures by using Hot Disk thermal constants analyzer in order to identify the interesting thermal properties of grouting materials. The grouting materials that we considered are of porous nature and, if used in the presence of groundwater, have different levels of imbibitions. It is important to know the thermal behavior of these materials at different water content. A first set of measurements was performed on a not-tinted material at room temperature; then the samples were led to saturation conditions by contact capillary imbibitions with a cotton wool layer moistened in water. The determination of thermal conductivity in these test conditions appears to be critical compared to the measuremems on non-timed sample. The thermal conductivity tests have revealed how the thermal behavior of the samples analyzed is essentially determined by the density and water content of the material: in fact, the thermal conductivity increases of two to three times the value of the not-tinted material.