In this study,different influence mechanisms associated with temperatures and pH values were investigated through cemented paste backfill(CPB)systems.CPB samples were prepared with temperatures ranging from 10 to 50℃...In this study,different influence mechanisms associated with temperatures and pH values were investigated through cemented paste backfill(CPB)systems.CPB samples were prepared with temperatures ranging from 10 to 50℃ in 10℃ increments and pH values of 3,7,and 13.Then,the CPB mixture were subjected to rheological tests,thermogravimetric analysis(TG),derivative thermogravimetry analysis(DTG),Fourier-transform infrared spectroscopy(FT-IR),and scanning electron microscopy(SEM).Results demonstrated that the temperatures had significant effects on the rheological properties of CPB,whereas the effects of pH values were relatively unapparent.Higher temperatures(over 20℃)were prone to bring higher shear stress,yield stress,and apparent viscosity with the same pH value condition.However,an overly high temperature(50℃)cannot raise the apparent viscosity.Non-neutral conditions,for pH values of 3 and 13,could strengthen the shear stress and apparent viscosity at the same temperature.Two different yield stress curves could be discovered by uprising pH values,which also led to apparent viscosity of two various curves under the same temperatures(under 50℃).Microscopically,rheological properties of CPB were affected by temperatures and pH values which enhanced or reduced the cement hydration procedures,rates,products and space structures.展开更多
Cemented paste backfill(CPB)is extensively used for underground mine support and/or tailings management.However,CPB behavior under cyclic loadings might be affected by the chemistry of its porewater,which often contai...Cemented paste backfill(CPB)is extensively used for underground mine support and/or tailings management.However,CPB behavior under cyclic loadings might be affected by the chemistry of its porewater,which often contains sulphate ions.Till today,no studies have addressed the effect of sulphate on the response of CPB to cyclic loadings by using shaking table technique.This study presents new findings of assessing the effect of the sulphate in the pore water of CPB on its geotechnical response to cyclic loading by using shaking table.CPB mixtures were prepared(with and without sulphate),poured into a flexible laminar shear box,cured to 4 h,and then exposed to cyclic loading using one-dimensional(1D)shaking table.Several parameters(e.g.pore water pressure,settlement,lateral deformation,acceleration,electrical conductivity,effective stress,and liquefaction susceptibility)were monitored or determined before,during,and after shaking.Obtained results indicate that the sulphate-bearing CPB cured to 4 h can be prone to liquefaction under the studied conditions.However,sulphate-free CPB samples are resistant to liquefaction.These results are expected to contribute to a better understanding of the effect of water chemistry on the cyclic behavior of CPB,consequently enhancing the cost-effective design of CPB structures.展开更多
With the gradual depletion of available ore at shallow depth,deep mines have been widely operated around the world and therefore need a longer distance to transport the backfill to the underground stope.In this case,t...With the gradual depletion of available ore at shallow depth,deep mines have been widely operated around the world and therefore need a longer distance to transport the backfill to the underground stope.In this case,the determination of pressure drop is more important in the pipeline transportation system design.As the pilot loop systems require a large amount of capital and manual investment,even its results are reliable,there is an urgent need to find an alternative simple and cost-saving method to determine the pressure drop.Hence,laboratory L-pipe and a pilot-loop tests were employed to study the flow properties of cemented paste backfill cured at various solid and binder content.The results indicate that the L-pipe test presented a similar trend to the loop test,but the L-pipe was characterized by higher pressure drop values for various solid and cement contents.As cement content increased beyond 0%,the paste in the L-pipe showed a slighter difference in pressure drop evolution compared to the paste in the loop-pipe.These results suggest that the simple L-pipe is a workable substitute for semi-industrial loop tests and can provide guidance for designing practical CPB pipeline systems in deep mines.展开更多
Cemented paste backfill(CPB)is largely used in underground mine stopes worldwide.When a CPB is placed in a stope,an important task is to estimate the settlement associated with the shrinkage and selfweight consolidati...Cemented paste backfill(CPB)is largely used in underground mine stopes worldwide.When a CPB is placed in a stope,an important task is to estimate the settlement associated with the shrinkage and selfweight consolidation of the CPB.This is closely related to the volume management to ensure the stability of barricades and tight contacts between the backfill and stope roof.Over the years,shrinkage studies were mostly performed on fine-grained soils(silts and clays),with only a few publications on the shrinkage behavior of uncemented tailings.No study has been published on the shrinkage behavior of CPB.To fill this gap,a series of shrinkage tests has been conducted on CPB with different cement contents,including zero cement content(uncemented paste backfill,uCPB).The results show that the shrinkage response of CPB is very different from that of uCPB.At a given initial water content,CPB exhibits a shorter normal shrinkage stage than uCPB.The unsaturation onset water content and void ratio,shrinkage limit and final void ratio of CPB are generally higher than those of uCPB.At a given cement content,the shrinkage behaviors of CPB and uCPB are significantly influenced by the initial water content.展开更多
This paper elaborates on the development of paste backfill using mill tailings generated during the processing of a uranium ore deposit hosted in dolomitic limestone. The tailings have been characterized in terms of t...This paper elaborates on the development of paste backfill using mill tailings generated during the processing of a uranium ore deposit hosted in dolomitic limestone. The tailings have been characterized in terms of the physical, chemical and mineralogical properties. Time-dependent rheological behaviors and geotechnical properties of cemented paste backfill(CPB) are also determined. The studies show that the mill tailing has the potential to form paste and the CPB has adequate strength to provide support to mine pillars, roofs, and walls.展开更多
This paper presents the results of the shear strength(frictional strength) of cemented paste backfillcemented paste backfill(CPB-CPB) and cemented paste backfillerock wall(CPB-rock) interfaces. The frictional be...This paper presents the results of the shear strength(frictional strength) of cemented paste backfillcemented paste backfill(CPB-CPB) and cemented paste backfillerock wall(CPB-rock) interfaces. The frictional behaviors of these interfaces were assessed for the short-term curing times(3 d and 7 d) using a direct shear apparatus RDS-200 from GCTS(Geotechnical Consulting & Testing Systems). The shear(friction) tests were performed at three different constant normal stress levels on flat and smooth interfaces. These tests aimed at understanding the mobilized shear strength at the CPB-rock and CPB-CPB interfaces during and/or after open stope filling(no exposed face). The applied normal stress levels were varied in a range corresponding to the usually measured in-situ horizontal pressures(longitudinal or transverse) developed within paste-filled stopes(uniaxial compressive strength, s c 150 k Pa). Results show that the mobilized shear strength is higher at the CPB-CPB interface than that at the CPB-rock interface. Also, the perfect elastoplastic behaviors observed for the CPB-rock interfaces were not observed for the CPB-CPB interfaces with low cement content which exhibits a strain-hardening behavior. These results are useful to estimate or validate numerical model for pressures determination in cemented backfill stope at short term. The tests were performed on real backfill and granite. The results may help understanding the mechanical behavior of the cemented paste backfill in general and, in particular, analyzing the shear strength at backfillebackfill and backfill-rock interfaces.展开更多
基金Project(2019zzts678)supported by the Fundamental Research Funds for the Central Universities,China。
文摘In this study,different influence mechanisms associated with temperatures and pH values were investigated through cemented paste backfill(CPB)systems.CPB samples were prepared with temperatures ranging from 10 to 50℃ in 10℃ increments and pH values of 3,7,and 13.Then,the CPB mixture were subjected to rheological tests,thermogravimetric analysis(TG),derivative thermogravimetry analysis(DTG),Fourier-transform infrared spectroscopy(FT-IR),and scanning electron microscopy(SEM).Results demonstrated that the temperatures had significant effects on the rheological properties of CPB,whereas the effects of pH values were relatively unapparent.Higher temperatures(over 20℃)were prone to bring higher shear stress,yield stress,and apparent viscosity with the same pH value condition.However,an overly high temperature(50℃)cannot raise the apparent viscosity.Non-neutral conditions,for pH values of 3 and 13,could strengthen the shear stress and apparent viscosity at the same temperature.Two different yield stress curves could be discovered by uprising pH values,which also led to apparent viscosity of two various curves under the same temperatures(under 50℃).Microscopically,rheological properties of CPB were affected by temperatures and pH values which enhanced or reduced the cement hydration procedures,rates,products and space structures.
基金The authors would like to thank the National Natural Sciences and Engineering Research Council of Canada(NSERC)for financially supporting this project
文摘Cemented paste backfill(CPB)is extensively used for underground mine support and/or tailings management.However,CPB behavior under cyclic loadings might be affected by the chemistry of its porewater,which often contains sulphate ions.Till today,no studies have addressed the effect of sulphate on the response of CPB to cyclic loadings by using shaking table technique.This study presents new findings of assessing the effect of the sulphate in the pore water of CPB on its geotechnical response to cyclic loading by using shaking table.CPB mixtures were prepared(with and without sulphate),poured into a flexible laminar shear box,cured to 4 h,and then exposed to cyclic loading using one-dimensional(1D)shaking table.Several parameters(e.g.pore water pressure,settlement,lateral deformation,acceleration,electrical conductivity,effective stress,and liquefaction susceptibility)were monitored or determined before,during,and after shaking.Obtained results indicate that the sulphate-bearing CPB cured to 4 h can be prone to liquefaction under the studied conditions.However,sulphate-free CPB samples are resistant to liquefaction.These results are expected to contribute to a better understanding of the effect of water chemistry on the cyclic behavior of CPB,consequently enhancing the cost-effective design of CPB structures.
基金Project(51904055)supported by the National Natural Science Foundation of ChinaProject(N2001010)supported by the Fundamental Research Funds for the Central Universities of China。
文摘With the gradual depletion of available ore at shallow depth,deep mines have been widely operated around the world and therefore need a longer distance to transport the backfill to the underground stope.In this case,the determination of pressure drop is more important in the pipeline transportation system design.As the pilot loop systems require a large amount of capital and manual investment,even its results are reliable,there is an urgent need to find an alternative simple and cost-saving method to determine the pressure drop.Hence,laboratory L-pipe and a pilot-loop tests were employed to study the flow properties of cemented paste backfill cured at various solid and binder content.The results indicate that the L-pipe test presented a similar trend to the loop test,but the L-pipe was characterized by higher pressure drop values for various solid and cement contents.As cement content increased beyond 0%,the paste in the L-pipe showed a slighter difference in pressure drop evolution compared to the paste in the loop-pipe.These results suggest that the simple L-pipe is a workable substitute for semi-industrial loop tests and can provide guidance for designing practical CPB pipeline systems in deep mines.
基金The authors would like to acknowledge the financial support from the Natural Sciences and Engineering Research Council of Canada(Grant No.NSERC 402318)Fonds de recherche du Québec-Nature et Technologies(Grant No.FRQNT 2015-MI-191676)+1 种基金Mitacs Elevate Postdoctoral Fellowship(Grant No.IT12573)industrial partners of the Research Institute on Mines and the Environment(RIME UQAT-Polytechnique).
文摘Cemented paste backfill(CPB)is largely used in underground mine stopes worldwide.When a CPB is placed in a stope,an important task is to estimate the settlement associated with the shrinkage and selfweight consolidation of the CPB.This is closely related to the volume management to ensure the stability of barricades and tight contacts between the backfill and stope roof.Over the years,shrinkage studies were mostly performed on fine-grained soils(silts and clays),with only a few publications on the shrinkage behavior of uncemented tailings.No study has been published on the shrinkage behavior of CPB.To fill this gap,a series of shrinkage tests has been conducted on CPB with different cement contents,including zero cement content(uncemented paste backfill,uCPB).The results show that the shrinkage response of CPB is very different from that of uCPB.At a given initial water content,CPB exhibits a shorter normal shrinkage stage than uCPB.The unsaturation onset water content and void ratio,shrinkage limit and final void ratio of CPB are generally higher than those of uCPB.At a given cement content,the shrinkage behaviors of CPB and uCPB are significantly influenced by the initial water content.
基金the Department of Atomic Energy (DAE),Government of India,for providing financial assistance (BARC/IFB/IITKHARAGPUR/295, Dt.18-03-2013) during this research work
文摘This paper elaborates on the development of paste backfill using mill tailings generated during the processing of a uranium ore deposit hosted in dolomitic limestone. The tailings have been characterized in terms of the physical, chemical and mineralogical properties. Time-dependent rheological behaviors and geotechnical properties of cemented paste backfill(CPB) are also determined. The studies show that the mill tailing has the potential to form paste and the CPB has adequate strength to provide support to mine pillars, roofs, and walls.
文摘This paper presents the results of the shear strength(frictional strength) of cemented paste backfillcemented paste backfill(CPB-CPB) and cemented paste backfillerock wall(CPB-rock) interfaces. The frictional behaviors of these interfaces were assessed for the short-term curing times(3 d and 7 d) using a direct shear apparatus RDS-200 from GCTS(Geotechnical Consulting & Testing Systems). The shear(friction) tests were performed at three different constant normal stress levels on flat and smooth interfaces. These tests aimed at understanding the mobilized shear strength at the CPB-rock and CPB-CPB interfaces during and/or after open stope filling(no exposed face). The applied normal stress levels were varied in a range corresponding to the usually measured in-situ horizontal pressures(longitudinal or transverse) developed within paste-filled stopes(uniaxial compressive strength, s c 150 k Pa). Results show that the mobilized shear strength is higher at the CPB-CPB interface than that at the CPB-rock interface. Also, the perfect elastoplastic behaviors observed for the CPB-rock interfaces were not observed for the CPB-CPB interfaces with low cement content which exhibits a strain-hardening behavior. These results are useful to estimate or validate numerical model for pressures determination in cemented backfill stope at short term. The tests were performed on real backfill and granite. The results may help understanding the mechanical behavior of the cemented paste backfill in general and, in particular, analyzing the shear strength at backfillebackfill and backfill-rock interfaces.