The influences of cement type, cement content, and curing time on the unconfined compression strength (UCS) of soil-cement were investigated. The influence of groundwater on UCS of soil- cement was also studied. The...The influences of cement type, cement content, and curing time on the unconfined compression strength (UCS) of soil-cement were investigated. The influence of groundwater on UCS of soil- cement was also studied. The experimental results indicate that the soil treated with high grade cement presents a higher UCS. Additionally, the UCS of soil-cement presents linearly increased with the cement content. A logarithm correlation between UCS and curing time presents to forecast the strength development. Compared with the UCS of samples immersed in distilled water, those immersed in groundwater oresent a hizher value.展开更多
Lagoon berms in western Alaska are difficult to design and build due to limited resources, high cost of construction and materials, and warm permafrost conditions. This paper explores methods to treat locally availabl...Lagoon berms in western Alaska are difficult to design and build due to limited resources, high cost of construction and materials, and warm permafrost conditions. This paper explores methods to treat locally available frozen materials and use them for berm construction. The goal is to find an optimized mix ratio for cement and additives that can be effective in increasing the strength and decreasing the thaw settlement of an ice-rich frozen silty soil. Soil of similar type and ice content to the permafrost found at a project site in Eek, Alaska is prepared in a cold room. The frozen soil is pulverized and cement, additives and fibers are added to the samples for enhancing shear strength and controlling thaw settlement. Thaw settlement and direct shear tests are performed to assess strength and settlement characteristics. This paper presents a sample preparation method, data from thaw settlement and direct shear tests, and analyses of the test results and preliminary conclusions.展开更多
Improvement of properties of weak soils in terms of strength,durability and cost is the key from engineering point of view.The weak soils could be stabilized using mechanical and/or chemical methods.Agents added durin...Improvement of properties of weak soils in terms of strength,durability and cost is the key from engineering point of view.The weak soils could be stabilized using mechanical and/or chemical methods.Agents added during chemical stabilization could improve the engineering properties of treated soils.Stabilizers utilized have to satisfy noticeable performance,durability,low price,and can be easily implemented.Since cement kiln dust(CKD) is industrial by-product,it would be a noble task if this waste material could be utilized for stabilization of sabkha soil.This study investigates the feasibility of utilizing CKD for improving the properties of sabkha soil.Soil samples are prepared with 2% cement and 10%,20% or 30% CKD and are tested to determine their unconfined compressive strength(UCS),soaked California bearing ratio(CBR) and durability.Mechanism of stabilization is studied utilizing advanced techniques,such as the scanning electron microscope(SEM),energy dispersive X-ray analysis(EDX),backscattered electron image(BEI) and X-ray diffraction analysis(XRD).It is noted that the sabkha soil mixed with 2% cement and 30% CKD could be used as a sub-base material in rigid pavements.The incorporation of CKD leads to technical and economic benefits.展开更多
基金Funded by the National Natural Science Foundation of China(Nos.51009061,51137002)the Chinese Ministry of Water Resources Funds for Science and Technology Promotion(No.TG1137)
文摘The influences of cement type, cement content, and curing time on the unconfined compression strength (UCS) of soil-cement were investigated. The influence of groundwater on UCS of soil- cement was also studied. The experimental results indicate that the soil treated with high grade cement presents a higher UCS. Additionally, the UCS of soil-cement presents linearly increased with the cement content. A logarithm correlation between UCS and curing time presents to forecast the strength development. Compared with the UCS of samples immersed in distilled water, those immersed in groundwater oresent a hizher value.
文摘Lagoon berms in western Alaska are difficult to design and build due to limited resources, high cost of construction and materials, and warm permafrost conditions. This paper explores methods to treat locally available frozen materials and use them for berm construction. The goal is to find an optimized mix ratio for cement and additives that can be effective in increasing the strength and decreasing the thaw settlement of an ice-rich frozen silty soil. Soil of similar type and ice content to the permafrost found at a project site in Eek, Alaska is prepared in a cold room. The frozen soil is pulverized and cement, additives and fibers are added to the samples for enhancing shear strength and controlling thaw settlement. Thaw settlement and direct shear tests are performed to assess strength and settlement characteristics. This paper presents a sample preparation method, data from thaw settlement and direct shear tests, and analyses of the test results and preliminary conclusions.
文摘Improvement of properties of weak soils in terms of strength,durability and cost is the key from engineering point of view.The weak soils could be stabilized using mechanical and/or chemical methods.Agents added during chemical stabilization could improve the engineering properties of treated soils.Stabilizers utilized have to satisfy noticeable performance,durability,low price,and can be easily implemented.Since cement kiln dust(CKD) is industrial by-product,it would be a noble task if this waste material could be utilized for stabilization of sabkha soil.This study investigates the feasibility of utilizing CKD for improving the properties of sabkha soil.Soil samples are prepared with 2% cement and 10%,20% or 30% CKD and are tested to determine their unconfined compressive strength(UCS),soaked California bearing ratio(CBR) and durability.Mechanism of stabilization is studied utilizing advanced techniques,such as the scanning electron microscope(SEM),energy dispersive X-ray analysis(EDX),backscattered electron image(BEI) and X-ray diffraction analysis(XRD).It is noted that the sabkha soil mixed with 2% cement and 30% CKD could be used as a sub-base material in rigid pavements.The incorporation of CKD leads to technical and economic benefits.