期刊文献+
共找到4,481篇文章
< 1 2 225 >
每页显示 20 50 100
Carbonation of Pure Minerals in Portland Cement:Evolution in Products as a Function of Water-to-solid Ratio
1
作者 XIONG Kun SHANG Xiaopeng +1 位作者 LI Hongyan WANG Dan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1214-1222,共9页
Minerals in Portland cement including tricalcium silicate(C_(3)S),β-dicalcium silicate(β-C_(2)S),tricalcium aluminate(C_(3)A),and tetracalcium ferroaluminate(C_(4)AF),show a significantly different activity and prod... Minerals in Portland cement including tricalcium silicate(C_(3)S),β-dicalcium silicate(β-C_(2)S),tricalcium aluminate(C_(3)A),and tetracalcium ferroaluminate(C_(4)AF),show a significantly different activity and product evolution for CO_(2)curing at various water-to-solid ratios.These pure minerals were synthesized and subject to CO_(2)curing in this study to make an in-depth understanding for the carbonation properties of cement-based materials.Results showed that the optimum water-to-solid ratios of C_(3)S,β-C_(2)S,C_(3)A and C_(4)AF were 0.25,0.15,0.30 and 0.40 for carbonation,corresponding to 2 h carbonation degree of 38.5%,38.5%,24.2%,and 21.9%,respectively.The produced calcite duringβ-C_(2)S carbonation decreased as the water-to-solid ratio increased,with an increase in content of metastable CaCO_(3)of vaterite and aragonite.The thermodynamic stability of CaCO_(3)produced during carbonation was C_(3)A>C_(4)AF>β-C_(2)S>C_(3)S.The carbonation degree of Portland cement was predicted based on the results of pure minerals and the composition of cement,and the error of predicted production of CaCO_(3)was only 1.1%,which provides a potential method to predict carbonation properties of systems with a complex mineral composition. 展开更多
关键词 accelerated carbonation portland cement calcium carbonate water-to-solid ratio
下载PDF
Effects of cement content, polypropylene fiber length and dosage on fluidity and mechanical properties of fiber-toughened cemented aeolian sand backfill
2
作者 Shushuai Wang Renshu Yang +1 位作者 Yongliang Li Zhongwen Yue 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第11期2404-2416,共13页
Using aeolian sand(AS)for goaf backfilling allows coordination of green mining and AS control.Cemented AS backfill(CASB)exhibits brittle fracture.Polypropylene(PP)fibers are good toughening materials.When the tougheni... Using aeolian sand(AS)for goaf backfilling allows coordination of green mining and AS control.Cemented AS backfill(CASB)exhibits brittle fracture.Polypropylene(PP)fibers are good toughening materials.When the toughening effect of fibers is analyzed,their influence on the slurry conveying performance should also be considered.Additionally,cement affects the interactions among the hydration products,fibers,and aggregates.In this study,the effects of cement content(8wt%,9wt%,and 10wt%)and PP fiber length(6,9,and 12 mm)and dosage(0.05wt%,0.1wt%,0.15wt%,0.2wt%,and 0.25wt%)on fluidity and mechanical properties of the fibertoughened CASB(FCASB)were analyzed.The results indicated that with increases in the three aforementioned factors,the slump flow decreased,while the rheological parameters increased.Uniaxial compressive strength(UCS)increased with the increase of cement content and fiber length,and with an increase in fiber dosage,it first increased and then decreased.The strain increased with the increase of fiber dosage and length.The effect of PP fibers became more pronounced with the increase of cement content.Digital image correlation(DIC)test results showed that the addition of fibers can restrain the peeling of blocks and the expansion of fissure,and reduce the stress concentration of the FCASB.Scanning electron microscopy(SEM)test indicated that the functional mechanisms of fibers mainly involved the interactions of fibers with the hydration products and matrix and the spatial distribution of fibers.On the basis of single-factor analysis,the response surface method(RSM)was used to analyze the effects of the three aforementioned factors and their interaction terms on the UCS.The influence surface of the two-factor interaction terms and the three-dimensional scatter plot of the three-factor coupling were established.In conclusion,the response law of the FCASB properties under the effects of cement and PP fibers were obtained,which provides theoretical and engineering guidance for FCASB filling. 展开更多
关键词 polypropylene fibers fiber-toughened cemented aeolian sand backfill digital image correlation scanning electron microscopy response surface method
下载PDF
Microscopic Analysis of Cementitious Sand and Gravel Damming Materia
3
作者 Ran Wang Aimin Gong +4 位作者 Shanqing Shao Baoli Qu Jing Xu Fulai Wang Feipeng Liu 《Fluid Dynamics & Materials Processing》 EI 2024年第4期749-769,共21页
The mechanical properties of cementitious sand and gravel damming material have been experimentally determined by means of microscopic SEM(Scanning Electron Microscopy)image analysis.The results show that the combinat... The mechanical properties of cementitious sand and gravel damming material have been experimentally determined by means of microscopic SEM(Scanning Electron Microscopy)image analysis.The results show that the combination of fly ash and water can fill the voids in cemented sand and gravel test blocks because of the presence of hydrated calcium silicate and other substances;thereby,the compactness and mechanical properties of these materials can be greatly improved.For every 10 kg/m^(3) increase in the amount of cementitious material,the density increases by about 2%,and the water content decreases by 0.2%.The amount of cementitious material used in the sand and gravel in these tests was 80-110 kg/m^(3),the water-binder ratio was 1-1.50.Moreover,the splitting tensile strength was 1/10 of the compressive strength,and the maximum strength was 7.42 MPa at 90 d.The optimal mix ratio has been found to be 50 kg of cement,60 kg of fly ash and 120 kg of water(C50F60W120).The related dry density was 2.6 g/cm^(3),the water content was 6%,and the water-binder ratio was 1.09. 展开更多
关键词 cementitious sand gravel material scanning electron microscopy optimal mix ratio maximum strength
下载PDF
Fatigue reliability quantitative analysis of cement concrete for highway pavement under high stress ratio 被引量:5
4
作者 薛彦卿 黄晓明 +2 位作者 钱吮智 马涛 邹湘衡 《Journal of Southeast University(English Edition)》 EI CAS 2012年第1期94-99,共6页
In order to obtain the change law of the fatigue reliability of cement concrete for highway pavement under high stress ratios, first, the probability densities of monotonic random variables including concrete fatigue ... In order to obtain the change law of the fatigue reliability of cement concrete for highway pavement under high stress ratios, first, the probability densities of monotonic random variables including concrete fatigue life are deduced. And then, the fatigue damage probability densities of the Miner and Chaboche-Zhao models are deduced. By virtue of laboratory fatigue test results, the fatigue damage probability density functions of the two models can be obtained, considering different stress ratios. Finally, substituting load cycles into them, the change law of cement concrete fatigue reliability about load cycles can be acquired. The results show that under the same stress ratio, with the increase in the load cycle, the fatigue reliability declines from almost 100% to 0% gradually. No matter under what stress ratio, during the initial stage of the load action, there is always a relatively stable phase for fatigue reliability. With the increase in the stress ratio, the stable phase gradually shortens and the load cycle corresponding to the reliability of 0% also decreases. In the descent phase of reliability, the higher the stress ratio is, the lower the concrete reliability is for the same load cycle. Besides, compared with the Chaboche-Zhao fatigue damage model, the Miner fatigue damage model is safer. 展开更多
关键词 cement concrete fatigue life fatigue damage probability density function high stress ratio fatigue reliability
下载PDF
Influence of MgO/MgCl_2 Molar Ratio on Phase Stability of Magnesium Oxychloride Cement 被引量:8
5
作者 巴恒静 关辉 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第3期476-481,共6页
Formation, solution and phase change of hydration products in MgO-MgCl2-H2O system was studied with thermodynamics method, and resistance to water immersion and phase change of magnesium oxychloride cement with differ... Formation, solution and phase change of hydration products in MgO-MgCl2-H2O system was studied with thermodynamics method, and resistance to water immersion and phase change of magnesium oxychloride cement with different MgO/MgCl2 molar ratio was experimented. The results show that pH value of immersion solution of cement paste has a remarkable influence on phase stability of hydration products. A higher pH value leads to a lower solubility and a better phase stability of hydration products. When the solution pH value is higher than 10.37, the precipitation of much Mg(OH)2 crystal induces a worse phase stability of hydration products. With the increasing MgO/MgCl2 molar ratio (lower than 6), the more amount of MgO in the hydration products enhances the alkalinity of solution and the phase stability is improved. However, when the MgO/MgCl2 molar ratio is higher than 6 and the excessive MgO exsits in the hydration products, the cement paste may be damaged by the excessive crystallization stress of a great deal of Mg(OH)2 formation. 展开更多
关键词 magnesium oxychloride cement molar ratio phase stability hydration reaction
下载PDF
Constitutive model for monotonic and cyclic responses of loosely cemented sand formations 被引量:4
6
作者 Mojtaba Rahimi Dave Chan Alireza Nouri 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第4期740-752,共13页
This paper presents a model to simulate the monotonic and cyclic behaviours of weakly cemented sands.An elastoplastic constitutive model within the framework of bounding surface plasticity theory is adopted to predict... This paper presents a model to simulate the monotonic and cyclic behaviours of weakly cemented sands.An elastoplastic constitutive model within the framework of bounding surface plasticity theory is adopted to predict the mechanical behaviour of soft sandstone under monotonic and cyclic loadings. In this model, the loading surface always passes through the current stress state regardless of the type of loading. Destruction of the cementation bonds by plastic deformation in the model is considered as the primary mechanism responsible for the mechanical degradation of loosely cemented sands/weak rock.To model cyclic response, the unloading plastic and elastic moduli are formulated based on the loading/reloading plastic and elastic moduli. The proposed model was implemented in FLAC2D and evaluated against laboratory triaxial tests under monotonic and cyclic loadings, and the model results agreed well with the experimental observations. For cyclic tests, hysteresis loops are captured with reasonable accuracy. 展开更多
关键词 Cyclic loading Monotonic loading cemented sand PLASTICITY Constitutive model
下载PDF
A constitutive model for evaluation of mechanical behavior of fiber-reinforced cemented sand 被引量:3
7
作者 Hadi Abioghli Amir Hamidi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第2期349-360,共12页
The aim of this study is to present a constitutive model for prediction of the mechanical behavior of fiberreinforced cemented sand. For this purpose, a generalized plasticity constitutive model of sandy soil is selec... The aim of this study is to present a constitutive model for prediction of the mechanical behavior of fiberreinforced cemented sand. For this purpose, a generalized plasticity constitutive model of sandy soil is selected and the parameters of the model are determined for three types of sandy soils using the results of triaxial tests. Next, the proposed model is developed using the existing models based on the physicomechanical characteristics of fiber-reinforced cemented sand. The elastic parameters, flow rule and hardening law of the base model are modified for fiber-reinforced cemented sand. To verify the proposed model, the predicted results are compared with those of triaxial tests performed on fiber-reinforced cemented sand. Finally, the efficiency of the proposed model is studied at different confining pressures, and cement and fiber contents. 展开更多
关键词 Fiber-reinforced cementED sand CONSTITUTIVE model HARDENING law Flow rule
下载PDF
Behavior of zeolite-cement grouted sand under triaxial compression test 被引量:4
8
作者 Peyman Jafarpour Reza Ziaie Moayed Afshin Kordnaeij 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第1期149-159,共11页
Permeation grouting with cement agent is one of the most widely used methods in various geotechnical projects,such as increasing bearing capacity,controlling deformation,and reducing permeability of soils.Due to air p... Permeation grouting with cement agent is one of the most widely used methods in various geotechnical projects,such as increasing bearing capacity,controlling deformation,and reducing permeability of soils.Due to air pollution induced during cement production as well as its high energy consumption,the use of supplementary materials to replace in part cement can be attractive.Natural zeolite(NZ),as an environmentally friendly material,is an alternative to reduce cement consumption.In the present study,a series of consolidated undrained(CU)triaxial tests on loose sandy soil(with relative density Dr=30%)grouted with cementitious materials(zeolite and cement)having cement replacement with zeolite content(Z)of 0%,10%,30%,50%,70%and 90%,and water to cementitious material ratios(W/CM)of 3,5 and 7 has been conducted.The results indicated that the peak deviatoric stress(qmax)of the grouted specimens increased with Z up to 50%(Z50)and then decreased.The strength of the grouted specimens reduced with increasing W/CM of the grouts from 3 to 7.In addition,by increasing the stress applied on the grouted specimens from yield stress(qy)to the maximum stress(qmax),due to the bond breakage,the effect of cohesion(c’)on the shear strength reduced gradually,while the effect of friction angle(φ’)increased.Furthermore,in some grouted specimens,high confining pressure caused breakage of the cemented bonds and reduced their expected strength. 展开更多
关键词 PERMEATION GROUTING sand ZEOLITE cement IMPROVEMENT
下载PDF
Effects of temperature and age on physico-mechanical properties of cemented gravel sand backfills 被引量:5
9
作者 JIANG Fei-fei ZHOU Hui +2 位作者 SHENG Jia KOU Yong-yuan LI Xiang-dong 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第10期2999-3012,共14页
Cemented backfill used in deep mines would inevitably be exposed to the ambient temperature of 20−60℃in the next few decades.In this paper,two types of cemented gravel sand backfills,cemented rod-mill sand backfill(C... Cemented backfill used in deep mines would inevitably be exposed to the ambient temperature of 20−60℃in the next few decades.In this paper,two types of cemented gravel sand backfills,cemented rod-mill sand backfill(CRB)and cemented gobi sand backfill(CGB),were prepared and cured at various temperatures(20,40,60℃)and ages(3,7,28 d),and the effects of temperature and age on the physico-mechanical properties of CRB and CGB were investigated based on laboratory tests.Results show that:1)the effects of temperature and age on the physico-mechanical properties of backfills mainly depend on the amount of hydration products and the refinement of cementation structures.The temperature has a more significant effect on thermal expansibility and ultrasonic performance at early ages.2)The facilitating effect of temperature and age on the compressive strength of CGB is higher than that on CRB.With the increase of temperature,the compressive failure modes changed from X-conjugate shear failure to tensile failure,and the integrity of specimens was significantly improved.3)Similarly,the shear performance of CGB is generally better than that of CRB.The temperature has a weaker effect on shear strength than age,but the shear deformation and shear plane morphology are closely related to temperature. 展开更多
关键词 cemented backfill gravel sand TEMPERATURE physico-mechanical properties deformation characteristics
下载PDF
Influence of repeated freeze-thaw on dynamic modulus and damping ratio properties of silty sand 被引量:3
10
作者 TianLiang Wang Chao Ma +1 位作者 Han Yan JianKun Liu 《Research in Cold and Arid Regions》 CSCD 2013年第5期572-576,共5页
Under repeated freezing and thawing in deep seasonal frozen regions, the stability and strength of the soil are imposed in the form of large uneven settlement, instability and strength reduction, which affect the norm... Under repeated freezing and thawing in deep seasonal frozen regions, the stability and strength of the soil are imposed in the form of large uneven settlement, instability and strength reduction, which affect the normal operation of railway lines. This study is to obtain the influencing rules of freeze-thaw on the dynamic properties (dynamic strain, confining pressure and compactness) of silty sand. Based on an amount of inner tests, the dynamic modulus and damping ratio properties of silty soil subjected to repeated freeze-thaw cycles were deeply researched and analyzed. The results are as follows: At the same dynamic strain, the relationship of dynamic stress and freeze-thaw cycles presents negative cor- relation, and the relationship of dynamic stress, confining pressure and compactness present positive correlation. The dynamic modulus double decreases while the damping ratio double increases with incremental increase in dynamic strain. The dynamic modulus sharply decreases while the damping ratio increases with incremental increase in freeze-thaw cycles, and then the changes level off after six freeze-thaw cycles. The dynamic modulus increases while the damping ratio decreases as the confining pressure and compactness increase at the same strain level. 展开更多
关键词 freeze-thaw cycles silty sand dynamic modulus damping ratio
下载PDF
Eff ect of Cementation on Calcium Carbonate Precipitation of Loose Sand Resulting from Microbial Treatment 被引量:2
11
作者 Yang Tang Jijian Lian +2 位作者 Guobin Xu Yue Yan Hongyin Xu 《Transactions of Tianjin University》 EI CAS 2017年第6期547-554,共8页
Microbe-induced calcite precipitation is a sustainable improvement technique for sandy soil, which can alter the properties of sand via microbial activity. In this study, we investigated the loose-sand-consolidation e... Microbe-induced calcite precipitation is a sustainable improvement technique for sandy soil, which can alter the properties of sand via microbial activity. In this study, we investigated the loose-sand-consolidation effect by controlling the injection velocity, bacterial and cementing-solution concentrations, and hold times. The results demonstrate that, as the cyclic batch increases, the utilization rate of the bacterial fluid increases and both the optical density (OD600) of the bacteria and urease activity decrease. Moreover, it was determined that a 3-h hold time for a 0.5 mol/L cementing solution with a cementing fluid velocity of 2 mL/min has the greatest bonding effect. The final strength of the loose sand with an increase in calcium carbonate content was further discussed. © 2017 Tianjin University and Springer-Verlag GmbH Germany 展开更多
关键词 Bacteria CALCITE Calcium cementing (shafts) MICROORGANISMS Precipitation (chemical) sand Well cementing
下载PDF
Effect of consolidation ratios on maximum dynamic shear modulus of sands 被引量:1
12
作者 袁晓铭 孙静 孙锐 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2005年第1期59-68,共10页
The dynamic shear modulus (DSM) is the most basic soil parameter in earthquake or other dynamic loading conditions and can be obtained through testing in the field or in the laboratory. The effect of consolidation rat... The dynamic shear modulus (DSM) is the most basic soil parameter in earthquake or other dynamic loading conditions and can be obtained through testing in the field or in the laboratory. The effect of consolidation ratios on the maximum DSM for two types of sand is investigated by using resonant column tests. And, an increment formula to obtain the maximum DSM for cases of consolidation ratio κc>1 is presented. The results indicate that the maximum DSM rises rapidly when κc is near 1 and then slows down, which means that the power function of the consolidation ratio increment κc-1 can be used to describe the variation of the maximum DSM due to κc>1. The results also indicate that the increase in the maximum DSM due to κc>1 is significantly larger than that predicted by Hardin and Black's formula. 展开更多
关键词 consolidation ratio maximum dynamic shear modulus increment formula sandS
下载PDF
Single-factor analysis and interaction terms on the mechanical and microscopic properties of cemented aeolian sand backfill 被引量:2
13
作者 Shushuai Wang Renshu Yang +2 位作者 Yongliang Li Bin Xu Bin Lu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第8期1584-1595,共12页
The use of aeolian sand(AS)as an aggregate to prepare coal mine cemented filling materials can resolve the problems of gangue shortage and excessive AS deposits.Owing to the lack of research on the mechanism of cement... The use of aeolian sand(AS)as an aggregate to prepare coal mine cemented filling materials can resolve the problems of gangue shortage and excessive AS deposits.Owing to the lack of research on the mechanism of cemented AS backfill(CASB),the response surface method(RSM)was adopted in this study to analyze the influence of ordinary Portland cement(PO)content(x_(1)),fly ash(FA)-AS(FA-AS)ratio(x_(2)),and concentration(x_(3))on the mechanical and microscopic properties of the CASB.The hydration characteristics and internal pore structure of the backfill were assessed through thermogravimetric/derivative thermogravimetric analysis,mercury intrusion porosimetry,and scanning electron microscopy.The RSM results show that the influence of each factor and interaction term on the response values is extremely significant(except x_(1)x_(3),which had no obvious effect on the 28 d strength).The uniaxial compressive strength(UCS)increased with the PO content,FA-AS ratio,and concentration.The interaction effects of x_(1)x_(2),x_(1)x_(3),and x_(2)x_(3) on the UCS at 3,7,and 28 d were analyzed.In terms of the influence of interaction items,an improvement in one factor promoted the strengthening effect of another factor.The enhancement mechanism of the curing time,PO content,and FA-AS ratio on the backfill was reflected in the increase in hydration products and pore structure optimization.By contrast,the enhancement mechanism of the concentration was mainly the pore structure optimization.The UCS was positively correlated with weight loss and micropore content but negatively correlated with the total porosity.The R^(2) value of the fitting function of the strength and weight loss,micropore content,and total porosity exceeded 0.9,which improved the characterization of the enhancement mechanism of the UCS based on the thermogravimetric analysis and pore structure.This work obtained that the influence rules and mechanisms of the PO,FA-AS,concentration,and interaction terms on the mechanical properties of the CASB provided a certain theoretical and engineering guidance for CASB filling. 展开更多
关键词 cemented aeolian sand backfill response surface method mechanical properties microscopic properties influence mechanism
下载PDF
The Hydration of Blended Cement at Low W/B Ratio 被引量:1
14
作者 胡曙光 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2003年第4期72-75,共4页
The hydration process,hydration product and hydration heat of blended cement paste mixed with mineral admixture and expansive agent at low W/B ratio are studied by XRD,thermo analysis,and calorimetry instrument,and th... The hydration process,hydration product and hydration heat of blended cement paste mixed with mineral admixture and expansive agent at low W/B ratio are studied by XRD,thermo analysis,and calorimetry instrument,and they were compared with those of pure cement paste.The results show that pure cement and blended cement at low W/B ratio have the same types of hydration products,but their respective amounts of hydration products of various blended cements at same ages and the variation law of the amount of same hydration products with ages are different;The joint effect of tumefaction of gel-ettringite due to water absorption and the expansive pressure on the pore and rift caused by the crystalloid ettringite is the impetus of the volume expansion of cement paste,and the former effect is much greater than the latter one. 展开更多
关键词 HYDratioN blended cement low W/B ratio expansion mechanism
下载PDF
A note on influence of stress anisotropy on the Poisson's ratio of dry sand 被引量:1
15
作者 Huan He Mingnan Li Kostas Senetakis 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第6期1159-1164,共6页
In this study, extender and bender element tests were conducted investigating the small-strain Poisson’s ratio of variable sands, with a focus on the effect of stress anisotropy in order to quantify the sensitivity o... In this study, extender and bender element tests were conducted investigating the small-strain Poisson’s ratio of variable sands, with a focus on the effect of stress anisotropy in order to quantify the sensitivity of Poisson’s ratio to the applied deviatoric stress. Four different uniform sands were tested, including a biogenic sand, a crushed rock and two natural sands, covering a wide range of particle shapes. From these sands, eleven samples were prepared in the laboratory and were tested under variable stress paths,maintaining a constant mean effective pressure while increasing the deviatoric compressive load. Under the application of these given stress paths, the data analysis indicated that the sensitivity of Poisson’s ratio to the stress ratio was more pronounced for sands with irregularly shaped particles in comparison to sands with fairly rounded and spherical grains. For sands with very irregularly shaped particles, the increase of Poisson’s ratio from the isotropic to the anisotropic stress state reached 50%, while this increase for natural sands with fairly rounded particles was in the order of 20%. 展开更多
关键词 Bender elements sand Poisson’s ratio
下载PDF
Influence of zeolite and cement additions on mechanical behavior of sandy soil 被引量:2
16
作者 Hossein Mola-Abasi Issa Shooshpasha 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第5期746-752,共7页
It is well known that the cemented sand is one of economic and environmental topics in soil stabilization. In this instance, a blend of sand, cement and other materials such as fiber, glass, nanoparticle and zeolite c... It is well known that the cemented sand is one of economic and environmental topics in soil stabilization. In this instance, a blend of sand, cement and other materials such as fiber, glass, nanoparticle and zeolite can be commercially available and effectively used in soil stabilization in road construction. However, the influence and effectiveness of zeolite on the properties of cemented sand systems have not been completely explored. In this study, based on an experimental program, the effects of zeolite on the characteristics of cemented sands are investigated. Stabilizing agent includes Portland cement of type II and zeolite. Results show the improvements of unconfined compressive strength (UCS) and failure properties of cemented sand when the cement is replaced by zeolite at an optimum proportion of 30% after 28 days. The rate of strength improvement is approximately between 20% and 78%. The efficiency of using zeolite increases with the increases in cement amount and porosity. Finally, a power function of void-cement ratio and zeolite content is demonstrated to be an appropriate method to assess UCS of zeolite-cemented mixtures. 展开更多
关键词 Zeolitecemented sand StrengthUnconfined compressive strength (UCS) Void-cement ratio
下载PDF
Study on Triaxial Mechanical Properties and Micro Mechanism of Fly Ash Reinforced Cement Calcareous Sand 被引量:1
17
作者 Ben Li Na Li +5 位作者 Chulei Fang Jun Hu Rong Yu Longxin Shu Kai Yao Fang Zhang 《Journal of Renewable Materials》 SCIE EI 2022年第6期1693-1710,共18页
In order to study the mechanical properties and micro-mechanism of industrial waste fly ash-reinforced cement calcareous sand(FCS),the triaxial unconsolidated undrained(UU)test and scanning electron microscope tests(S... In order to study the mechanical properties and micro-mechanism of industrial waste fly ash-reinforced cement calcareous sand(FCS),the triaxial unconsolidated undrained(UU)test and scanning electron microscope tests(SEM)were carried out on it.The results of UU test show that the peak stress and energy dissipation of the FCS sample first increase and then decrease with the increase in fly ash content.Fly ash enhances the cement calcareous sand by increasing both the cohesion and internal friction angle,and adding 10%content of fly ash gives the largest values.The SEM test results shows that the hydration products of cement and fly ash filled the pores and cracks on the surface of the calcareous sand,which increased the compactness and structure of the FCS samples.The porosity of cement calcareous sand can be reduced from 27.6%to 12.8%by adding 10%fly ash.A brittleness evaluation index based on energy dissipation is proposed to quantitatively characterize the brittleness of FCS samples.The results show that when the content of fly ash is 5%,the brittleness of FCS samples is the lowest.This study shows that the mechanical properties of cement calcareous sand can be effectively enhanced by adding the appropriate amount of fly ash. 展开更多
关键词 Calcareous sand cement fly ash triaxial UU test SEM test
下载PDF
A Simple Cement Hydration Model Considering the Influences ofWater-to-Cement Ratio and Mineral Composition 被引量:1
18
作者 Baoyu Ma Guansuo Dui +5 位作者 Zhenglin Jia Bo Yang Chunyan Yang Quangui Gao Longhua Qin Ju Ma 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第6期1059-1067,共9页
A simple hydration model is used here by taking the composition of the cement and the initial water: cementratio (w/c) into account explicitly. Its conceptual basis is a combination of the Avrami equation and Bentz’s... A simple hydration model is used here by taking the composition of the cement and the initial water: cementratio (w/c) into account explicitly. Its conceptual basis is a combination of the Avrami equation and Bentz’s modelbased on simple spatial considerations. In this model, the Avrami equation determines the initial reaction, andBentz’s model describes the following hydration stage. The model favors engineers for it relies on one experimentalparameter and has a reliable approximation in the practice. 展开更多
关键词 Hydration model water/cement ratio composition of the cement engineering practicability only one parameter
下载PDF
Effect of fiber-reinforcement on the mechanical behavior of sand approaching the critical state 被引量:1
19
作者 Jakhongirbek Ganiev Shotaro Yamada +1 位作者 Masaki Nakano Takayuki Sakai 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第4期1241-1252,共12页
Several types of ground improvement methods that employ fiber-reinforcement have been developed in recent years.A series of consolidated drained triaxial compression tests has been conducted here to examine the effect... Several types of ground improvement methods that employ fiber-reinforcement have been developed in recent years.A series of consolidated drained triaxial compression tests has been conducted here to examine the effect of short fibers on the mechanical properties of Toyoura sand.Sand with 0%,0.2%,0.4%,and 1%fiber contents,prepared to yield random distribution,was sheared under several confining pressures and controlled via their initial relative densities.The test results showed that the maximum and residual deviatoric stresses increased,whereas the volumetric expansion decreased with an increase in fiber content.Although the stress ratio h(=q/p′)and specific volume changed depending on the fiber content and confining pressure with shear progression,they each reached the same values for a definite fiber content at the end of shearing,independent of initial relative density.In other words,the unique critical state line can be found for a definite fiber content.Moreover,the greater the fiber content,the larger the slope of the critical state line at the end of shearing.Additionally,as the length of fibers shortened with the same percentage of fiber inclusions in sand,the deviatoric stress and the stress ratio decreased,approaching the shear-strain-volumetric response of unreinforced sand. 展开更多
关键词 Fiber-reinforced sand Triaxial compression Stress ratio Critical state Relative density
下载PDF
The Effects of Different Ratios of Feldspathic Sandstone and Sand Compound Soil on Water-stable Aggregates in 4 Years Crop Planting 被引量:1
20
作者 Tong ZHAO Jichang HAN +2 位作者 Yang ZHANG Huanyuan WANG Xian JI 《Asian Agricultural Research》 2017年第3期96-101,109,共7页
To study the formation process of feldspathic sandstone and sand compound soil in the Mu Us Desert,1∶ 1,1∶ 2 and 1∶ 5 ratios of feldspathic sandstone and sand were mixed to obtain compound soil to plant crops,and a... To study the formation process of feldspathic sandstone and sand compound soil in the Mu Us Desert,1∶ 1,1∶ 2 and 1∶ 5 ratios of feldspathic sandstone and sand were mixed to obtain compound soil to plant crops,and analyze the rules of changes in water-stable aggregates of the compound soil among the 4 years crops growing process. The results showed,before crop planting,the order of mass percent of> 0. 25 mm and 0. 25-2. 00 mm water-stable aggregates in three kinds of compound soil was 1∶ 1 > 1∶ 2 > 1∶ 5,showing that the overall content was low; the mass percent of > 0. 25 mm water-stable aggregates remained at 18. 38%-28. 22%; the mass percent of 0. 25-0. 50 mm,0. 50-2. 00 mm,2. 00-5. 00 mm,and > 5. 00 mm water-stable aggregates was close with each other in each kind of compound soil. After4 years of planting,the mass percent of > 0. 25 mm water-stable aggregates in 1∶ 2 compound soil increased significantly and exceeded other2 kinds of compound soil,reached 32. 34%; the main components of > 0. 25 mm water stable aggregates in 1∶ 1,1∶ 2,and 1∶ 5 compound soil were 0. 25-0. 50 mm( 53. 54%),0. 25-0. 50 mm( 59. 43%),0. 05-2. 00 mm( 52. 16%),aggregates; 0. 25-2. 00 mm aggregates increased significantly in all three kinds of compound soil,with the highest increase in 1∶ 2 compound soil; the organic matters of 1∶ 2 compound soil were significantly correlated with 0. 25-0. 50 mm and 0. 25-2. 00 mm water-stable aggregates. The results showed that the ratio of 0. 25-2. 00 mm aggregates in the three kinds of compound soil was increased after 4 years of crop planting and 1∶ 2 compound soil was most favorable for the formation of aggregates. 展开更多
关键词 Feldspathic sandstone and sand compound soil Water-stable aggregates cementATION
下载PDF
上一页 1 2 225 下一页 到第
使用帮助 返回顶部