The composite pile consisting of core-pile and surrounding cement-enhanced soil is a promising pile foundation in recent years.However,how and to what extent the cement-enhanced soil influences the ultimate lateral re...The composite pile consisting of core-pile and surrounding cement-enhanced soil is a promising pile foundation in recent years.However,how and to what extent the cement-enhanced soil influences the ultimate lateral resistance has not been fully investigated.In this paper,the ultimate lateral resistance of the composite pile was studied by finite element limit analysis(FELA)and theoretical upper-bound analysis.The results of FELA and theoretical analysis revealed three failure modes of laterally loaded composite piles.The effects of the enhanced soil thickness,strength,and pile-enhanced soil interface characteristics on the ultimate lateral resistance were studied.The results show that increasing the enhanced soil thickness leads to a significant improvement on ultimate lateral resistance factor(N P),and there is a critical thickness beyond which the thickness no longer affects the N P.Increasing the enhanced soil strength induced 6.2%-232.6%increase of N P.However,no noticeable impact was detected when the enhanced soil strength was eight times higher than that of the natural soil.The maximum increment of N P is only 30.5%caused by the increase of interface adhesion factor(a).An empirical model was developed to calculate the N P of the composite pile,and the results show excellent agreement with the analytical results.展开更多
A rigorous analytical model is developed for simulating the vibration behaviors of large-diameter openended pipe piles(OEPPs)and surrounding soil undergoing high-strain impact loading.To describe the soil behavior,the...A rigorous analytical model is developed for simulating the vibration behaviors of large-diameter openended pipe piles(OEPPs)and surrounding soil undergoing high-strain impact loading.To describe the soil behavior,the soil along pile shaft is divided into slip and nonslip zones and the base soil is modeled as a fictitious-soil pile(FSP)to account for the wave propagation in the soil.True soil properties are adopted and slippage at the pile-soil interface is considered,allowing realistic representation of largediameter OEPP mechanics.The developed model is validated by comparing with conventional models and finite element method(FEM).It is further used to successfully simulate and interpret the behaviors of a steel OEPP during the offshore field test.It is found that the variation in the vertical vibrations of shaft soil along radial direction is significant for large-diameter OEPPs,and the velocity amplitudes of the internal and external soil attenuate following different patterns.The shaft soil motion may not attenuate with depth due to the soil slippage,while the wave attenuation at base soil indicates an influence depth,with a faster attenuation rate than that in the pile.The findings from the current study should aid in simulating the vibration behaviors of large-diameter OEPP-soil system under high-strain dynamic loading.展开更多
Based on the idea of optimization design of pile type, the two kinds of the typical pile type are selected, which containing flexibility pile (e.g. rammed cement-soil pile is for short RCSP), and rigid pile (e.g. ceme...Based on the idea of optimization design of pile type, the two kinds of the typical pile type are selected, which containing flexibility pile (e.g. rammed cement-soil pile is for short RCSP), and rigid pile (e.g. cement-flyash-gravel pile is for short CFGP). The three kinds of the composite foundation are designed, which are CFGP, CFG long pile and CFG short pile (for short CFGLP-CFGSP), CFG long-short pile and rammed cement-soil short pile (for short CFGLP-RCSSP). Natural earthquake is simulated by using the engineering blasting;the dynamic characteristics and dynamic response of the composite foundation are studied through field test. CFGLP-RCSSP is closed to linear relation. The bearing capacity of the four composite foundation of the CFGP, CFGLP-CFGSP, and CFGLP-RCSSP in the site are 225 kPa, 179 kPa, and 197 kPa, separately increases 150%, 98.8% and 119% compared to the natural foundation. The vibration main frequency is mainly depended on properties of foundation soil and piles between vibration source and measuring point, pilling load value. Horizontal vibration main frequency greater than the vertical vibration main frequency and the vertical vibration main frequency close to the first-order natural frequency of composite foundation. With the pilling load increasing, the CFGLP-RCSSP pile composite foundation combined frequency decreased. Under the same blast energy, the acceleration peak on the CFG pile composite foundation is less than CFGLP-CFGSP the corresponding values, as the load increases, the peak acceleration gently. CFG pile composite foundation is favorable on seismic. The distribution of peak acceleration is consistent within 4 m from pile top in the CFGLP_RCSSP composite foundation. The maximum of the horizontal acceleration peak along the pile body occurs at a distance of pile top 4 m or the pile top, and that of vertical acceleration peak occurred at a pile top.展开更多
Despite the continuous advancements of engineering construction in high-intensity areas,many engineering landslides are still manufactured with huge thrust force,and double-row piles are effective to control such larg...Despite the continuous advancements of engineering construction in high-intensity areas,many engineering landslides are still manufactured with huge thrust force,and double-row piles are effective to control such large landslides.In this study,large shaking table test were performed to test and obtain multi-attribute seismic data such as feature image,acceleration,and dynamic soil pressure.Through the feature image processing analysis,the deformation characteristics for the slope reinforced by double-row piles were revealed.By analyzing the acceleration and the dynamic soil pressure time domain,the spatial dynamic response characteristics were revealed.Using Fast Fourier Transform and half-power bandwidth,the damping ratio of acceleration and dynamic soil pressure was obtained.Following that,the Seism Signal was used to calculate the spectral displacement of the accelerations to obtain the regional differences of spectral displacement.The results showed that the overall deformation mechanism of the slope originates from tension failure in the soil mass.The platform at the back of the slope was caused by seismic subsidence,and the peak acceleration ratio was positively correlated with the relative pile heights.The dynamic soil pressure of the front row piles showed an inverted"K"-shaped distribution,but that of the back row piles showed an"S"-shaped distribution.The predominant frequency of acceleration was 2.16 Hz,and the main frequency band was 0.7-6.87 Hz;for dynamic soil pressure,the two parameters became 1.15 Hz and 0.5-6.59 Hz,respectively.In conclusion,dynamic soil pressure was more sensitive to dampening effects than acceleration.Besides,compared to acceleration,dynamic soil pressure exhibited larger loss factors and lower resonance peaks.Finally,back row pile heads were highly sensitive to spectral displacement compared to front row pile heads.These findings may be of reference value for future seismic designs of double-row piles.展开更多
Effect of soil displacement on friction single pile in the cases of tunneling,surcharge load and uniform soil movement was discussed in details with finite element method.Lateral displacement of the pile caused by soi...Effect of soil displacement on friction single pile in the cases of tunneling,surcharge load and uniform soil movement was discussed in details with finite element method.Lateral displacement of the pile caused by soil displacement reached about 90% of the total displacement,which means that P-Δ effect of axial load can be neglected.The maximum moment of pile decreased from 159 kN·m to 133 kN·m in the case of surcharge load when the axial load increased from 0 to the ultimate load.When deformation of pile caused by soil displacement is large,axial load applied on pile-head plays the role of reducing the maximum bending moment in concrete pile to some extent.When pile is on one side of the tunnel,soil displacements around the pile are all alike,which means that the soil pressures around the pile do not decrease during tunneling.Therefore,Q-s curve of the pile affected by tunneling is very close to that of pile in static loading test.Bearing capacities of piles influenced by surcharge load and uniform soil movement are 2480 kN and 2630 kN,respectively,which are a little greater than that of the pile in static loading test(2400 kN).Soil pressures along pile increase due to surcharge load and uniform soil movement,and so do the shaft resistances along pile,as a result,when rebars in concrete piles are enough,bearing capacity of pile affected by soil displacement increases compared with that of pile in static loading test.展开更多
Pile foundations are still the preferred foundation system for high-rise structures in earthquake-prone regions.Pile foundations have experienced failures in past earthquakes due to liquefaction.Research on pile found...Pile foundations are still the preferred foundation system for high-rise structures in earthquake-prone regions.Pile foundations have experienced failures in past earthquakes due to liquefaction.Research on pile foundations in liquefiable soils has primarily focused on the pile foundation behavior in two or three-layered soil profiles.However,in natural occurrence,it may occur in alternative layers of liquefiable and non-liquefiable soil.However,the experimental and/or numerical studies on the layered effect on pile foundations have not been widely addressed in the literature.Most of the design codes across the world do not explicitly mention the effect of sandwiched non-liquefiable soil layers on the pile response.In the present study,the behavior of an end-bearing pile in layered liquefiable and non-liquefiable soil deposit is studied numerically.This study found that the kinematic bending moment is higher and governs the design when the effect of the sandwiched non-liquefied layer is considered in the analysis as opposed to when its effect is ignored.Therefore,ignoring the effect of the sandwiched non-liquefied layer in a liquefiable soil deposit might be a nonconservative design approach.展开更多
Artificially cemented soils have been widely used as filling materials in highway and railway construction.The shear strength evolution of filling materials upon moist variation can determine the stability of subgrade...Artificially cemented soils have been widely used as filling materials in highway and railway construction.The shear strength evolution of filling materials upon moist variation can determine the stability of subgrade and embankments.This study conducted water retention tests,MIP tests,and multi-stage triaxial shear tests on cement-treated granite residual soil(GRS)to determine its water retention curve(WRC)upon free drying,pore structure,and peak shear strength qf,respectively.The water retention behavior and shear strength evolution upon free drying were modeled based on the dual-porosity structure of cement-treated GRS and the effective stress principle,respectively.Results show that the drying-WRC is bimodal and higher cement dosage yields a more severe decrease in the water retention capacity within a specific suction range.For a given confining pressure,the peak shear strength qf increased with increasing cement dosage or suction value s.The peak shear strength qf also solely depends on the suction value in the peak stress state.In addition,the cement-treated GRS has a bimodal pore size distribution curve,and its macro-and micro-void ratios remain almost unchanged after free drying.The bimodal drying-WRC of the cement-treated GRS can be modeled by differentiating the water retention mechanisms in macro-and micro-pores.Moreover,using the macro-pore degree of saturation as the effective stress parameterχ=S_(rM),the q_(f)–p′_(f)relationship(where p′_(f)is the effective mean pressure at failure)under various suction and stress conditions can be unified,and the q_(f)–s relationships at various net confining pressuresσ_(3),net can be well reproduced.These findings can help design subgrade and embankments constructed by artificially cemented GRS and assess their safe operation upon climate change.展开更多
This research is concentrated on the longitudinal vibration of a tapered pipe pile considering the vertical support of the surrounding soil and construction disturbance.First,the pile-soil system is partitioned into f...This research is concentrated on the longitudinal vibration of a tapered pipe pile considering the vertical support of the surrounding soil and construction disturbance.First,the pile-soil system is partitioned into finite segments in the vertical direction and the Voigt model is applied to simulate the vertical support of the surrounding soil acting on the pile segment.The surrounding soil is divided into finite ring-shaped zones in the radial direction to consider the construction disturbance.Then,the shear complex stiffness at the pile-soil interface is derived by solving the dynamic equilibrium equation for the soil from the outermost to innermost zone.The displacement impedance at the top of an arbitrary pile segment is obtained by solving the dynamic equilibrium equation for the pile and is combined with the vertical support of the surrounding soil to derive the displacement impedance at the bottom of the upper adjacent segment.Further,the displacement impedance at the pile head is obtained based on the impedance function transfer technique.Finally,the reliability of the proposed solution is verified,followed by a sensitivity analysis concerning the coupling effect of the pile parameters,construction disturbance and the vertical support of the surrounding soil on the displacement impedance of the pile.展开更多
In permafrost regions with warm frozen soil,subgrade thaw-collapse phenomenon commonly occurs,facing thaw collapse problems of the existed frozen soil subgrade,thus it is difficult to use traditional methods such as a...In permafrost regions with warm frozen soil,subgrade thaw-collapse phenomenon commonly occurs,facing thaw collapse problems of the existed frozen soil subgrade,thus it is difficult to use traditional methods such as active cooling and passive protection technology to stabilize the existed warm frozen soil subgrade.This study derives a novel stabilizer method,a long-short(L-S)cement-mixed batter pile composite foundation to stabilize the existed warm frozen soil subgrade.To solve the thawcollapse problems in warm frozen soil subgrade,high water content and large compressibility characteristics were compared between soft soil and warm frozen soils.Theoretical analysis of heat conduction and numerical simulation of finite element model were used to study the freeze–thaw process and evaluate the stabilized effects of the L-S cement-mixed batter piles on the warm frozen soil foundation of the Qinghai-Tibet Highway.Furthermore,the thaw process and mechanical properties of foundation and piles were analyzed by introducing the hydration heat factor in the thermodynamic control equation.The results indicate that the thawing displacement of the existed warm frozen soil subgrade was reduced owing to the“support”and“grasp”effects of the L-S cement-mixed batter piles on the surrounding soil.The composite ground formed by strengthening the warm frozen ground with batter piles could considerably improve the bearing capacity of the existed warm frozen ground,effectively restrain the deformation of the upper embankment,and improve the strength of the ground.The analysis can provide method for the construction design of cement mixing batter pile foundation in cold regions.展开更多
The couple effect of soil displacement and axial load on the single inclined pile in cases of surcharge load and uniform soil movement is discussed in detail with the methods of full-scale field tests and finite eleme...The couple effect of soil displacement and axial load on the single inclined pile in cases of surcharge load and uniform soil movement is discussed in detail with the methods of full-scale field tests and finite element method. Parametric analyses including the degree of inclination and the distance between soil and pile are carried out herein. When the displacement of soil on the left side and right side of a pile is identical, deformation of a vertical pile and an inclined pile is highly close in both cases of surcharge load and uniform soil movement. When the couple effect of soil displacement and axial load occurs, settlement of an inclined pile is greater than that of a vertical pile under the same axial load, and bearing capacity of an inclined pile is smaller than that of a vertical pile. This is quite different from the case when the inclined pile is not affected by soil displacement. For inclined piles, P-Δ effect of axial load would lead to a large increase in bending moment, however, for the vertical pile, P-Δ effect of axial load can be neglected. Although the direction of inclination of piles is reverse, deformation of piles caused by uniform soil movement is totally the same. For the inclined piles discussed herein, bending moment(-8 m to-17 m under the ground) relies heavily on uniform soil movement and does not change during the process of applying axial load. When the thickness of soil is less than the pile length, the greater the thickness of soil, the larger the bending moment at lower part of the inclined pile. When the thickness of soil is larger than the pile length, bending moment at lower part of the inclined pile is zero.展开更多
The electrical resistivity characteristics of cement soil and flyash lime soil are investigated in the laboratory and the field. It is shown that the electrical resistivities of the cement soil and flyash lime s...The electrical resistivity characteristics of cement soil and flyash lime soil are investigated in the laboratory and the field. It is shown that the electrical resistivities of the cement soil and flyash lime soil are sensitive to water content, degree of saturation and unconfined strength. The cement soil and flyash lime soil with higher water content, greater degree of saturation, lower unconfined strength has lower electrical resistivity. Electrical resistivity is also correlated with additives. Based on the tests, it is concluded that the electrical resistivity method is available for checking the effectiveness of the soil improvement by the cement soil and flyash lime soil mixing pile in terms of engineering practice.展开更多
A shake-table experiment on pile foundations in liquefi able soils composed of liquefi able sand and overlying soft clay is studied. A three-dimensional(3D) effective stress fi nite element(FE) analysis is employed to...A shake-table experiment on pile foundations in liquefi able soils composed of liquefi able sand and overlying soft clay is studied. A three-dimensional(3D) effective stress fi nite element(FE) analysis is employed to simulate the experiment. A recently developed multi-surface elasto-plastic constitutive model and a fully coupled dynamic inelastic FE formulation(u-p) are used to model the liquefaction behavior of the sand. The soil domains are discretized using a solid-fl uid fully coupled(u-p) 20-8 noded brick element. The pile is simulated using beam-column elements. Upon careful calibration, very good agreement is obtained between the computed and the measured dynamic behavior of the ground and the pile. A parametric analysis is also conducted on the model to investigate the effect of pile-pinning, pile diameter, pile stiffness, ground inclination angle, superstructure mass and pile head restraints on the ground improvement. It is found that the pile foundation has a noticeable pinning effect that reduces the lateral soil displacement. It is observed that a larger pile diameter and fi xed pile head restraints contribute to decreasing the lateral pile deformation; however, a higher ground inclination angle tends to increase the lateral pile head displacements and pile stiffness, and superstructure mass seems to effectively infl uence the lateral pile displacements.展开更多
Long steel piles with large diameters have been more widely used in the field of ocean engineering. Owing to the pile with a large diameter, soil plug development during pile driving has great influences on pile drive...Long steel piles with large diameters have been more widely used in the field of ocean engineering. Owing to the pile with a large diameter, soil plug development during pile driving has great influences on pile driveability and bearing capacity. The response of soil plug developed inside the open-ended pipe pile during the dynamic condition of pile-driving is different from the response under the static condition of loading during service. This paper addresses the former aspect. A numerical procedure for soil plug effect prediction and pile driveabihty analysis is proposed and described. By taking into consideration of the pile dimension effect on side and tip resistance, this approach introduces a dimensional coefficient to the conventional static eqnihbrium equations for the plug differential unit and proposes an improved static equity method for the plug effect prediction. At the same time, this approach introduces a simplified model by use of one-dimensional stress wave equation to simulate the interaction between soil plug and pile inner wall. The proposed approach has been applied in practical engineering analyses. Results show that the calculated plug effect and pile driveabihty based on the proposed approach agree well with the observed data.展开更多
A small-scale physical modelling method was developed to investigate the pile bearing capacity and the soil displacement around the pile using transparent soil and particle image velocimetry(PIV) technique. Transparen...A small-scale physical modelling method was developed to investigate the pile bearing capacity and the soil displacement around the pile using transparent soil and particle image velocimetry(PIV) technique. Transparent sand was made of baked quartz and a pore fluid with a matching refractive index. The physical modelling system consists of a loading system, a laser light, a CCD camera, an optical platform and a computer for image analyzing. A distinctive laser speckle was generated by the interaction between the laser light and transparent soil. Two laser speckle images before and after deformation were used to calculate the soil displacement field using PIV. Two pipe piles with different diameters under oblique pullout loads at angles of 0°, 30°, 45°, 60° and 90° were used in tests. The load-displacement response, oblique pullout ultimate resistances and soil displacement fields were then studied. The test results show that the developed physical modelling method and transparent soil are suitable for pile-soil interaction problems. The soil displacements around the pipe piles will improve the understanding on the capacity of pipe piles under oblique pullout loads.展开更多
This study considers the torsional vibration of a pipe pile in a transversely isotropic saturated soil layer. Based on Biot's poroelastic theory and the constitutive relations of the transversely isotropic medium, th...This study considers the torsional vibration of a pipe pile in a transversely isotropic saturated soil layer. Based on Biot's poroelastic theory and the constitutive relations of the transversely isotropic medium, the dynamic governing equations of the outer and inner transversely isotropic saturated soil layers are derived. The Laplace transform is used to solve the governing equations of the outer and inner soil layers. The dynamic torsional response of the pipe pile in the frequency domain is derived utilizing 1D elastic theory and the continuous conditions at the interfaces between the pipe pile and the soils. The time domain solution is obtained by Fourier inverse transform. A parametric study is conducted to demonstrate the influence of the anisotropies of the outer and inner soil on the torsional dynamic response of the pipe pile.展开更多
The dynamic response of pile in layered soil is theoretically investigated when considering the transverse inertia effect.Firstly, the fictitious soil-pile model is employed to simulate the dynamic interaction between...The dynamic response of pile in layered soil is theoretically investigated when considering the transverse inertia effect.Firstly, the fictitious soil-pile model is employed to simulate the dynamic interaction between the pile and the soil layers beneath pile toe. The dynamic interactions of adjacent soil layers along the vertical direction are simplified as distributed Voigt models.Meanwhile, the pile and fictitious soil-pile are assumed to be viscoelastic Rayleigh-Love rods, and both the radial and vertical displacement continuity conditions at the soil-pile interface are taken into consideration. On this basis, the analytical solution for dynamic response at the pile head is derived in the frequency domain and the corresponding quasi-analytical solution in the time domain is then obtained by means of the convolution theorem. Following this, the accuracy and parameter value of the hypothetical boundaries for soil-layer interfaces are discussed. Comparisons with published solution and measured data are carried out to verify the rationality of the present solution. Parametric analyses are further conducted by using the present solution to investigate the relationships between the transverse inertia effects and soil-pile parameters.展开更多
The improvement of question soils with cement shows great technical, economic and environmental advantages. And interest in introducing electrical resistivity measurement to assess the quality of cement treated soils ...The improvement of question soils with cement shows great technical, economic and environmental advantages. And interest in introducing electrical resistivity measurement to assess the quality of cement treated soils has increased markedly recently due to its economical, non-destructive, and relatively non-invasive advantages. This work aims to quantify the effect of cement content (aw), porosity (nt), and curing time(T) on the electrical resistivity (p) and unconfined compression strength (UCS) of cement treated soil. A series of electrical resistivity tests and UCS tests of cement treated soil specimen after various curing periods were carried out. A modified Archie empirical law was proposed taking into account the effect of cement content and curing period on the electrical resistivity of cement treated soil. The results show that nt/(aw·T) and nt/(aw·T^1/2) ratio are appropriate parameters to assess electrical resistivity and UCS of cement treated soil, respectively. Finally, the relationship between UCS and electrical resistivity was also established.展开更多
Construction of seaside and underground wall bracing often uses stiffened deep cement mixed columns (SDCM). This research investigates methods used to improve the level of bearing capacity of these SDCM when subject...Construction of seaside and underground wall bracing often uses stiffened deep cement mixed columns (SDCM). This research investigates methods used to improve the level of bearing capacity of these SDCM when subjected to cyclic lateral loading via various types of stiffer cores. Eight piles, two deep cement mixed piles and six stiffened deep cement mixing piles with three different types of cores, H shape cross section prestressed concrete, steel pipe, and H-beam steel, were embedded though soft clay into medium-hard clay on site in Thailand. Cyclic horizontal loading was gradually applied until pile failure and the hysteresis loops of lateral load vs. lateral deformation were recorded. The lateral carrying capacities of the SDCM piles with an H-beam steel core increased by 3-4 times that of the DCM piles. This field research clearly shows that using H-beam steel as a stiffer core for SDCM piles is the best method to improve its lateral carrying capacity, ductility and energy dissipation capacity.展开更多
The construction process and load-bearing behaviors of Cast-in-place concrete thin-wall pipe piles are analyzed based on its application on Yantong Expressway Project. The low strain test, static load test and field e...The construction process and load-bearing behaviors of Cast-in-place concrete thin-wall pipe piles are analyzed based on its application on Yantong Expressway Project. The low strain test, static load test and field excavation were also carried out, and the bearing capacity of the new pile can meet the requirements of design. With the increase of pile diameter, the bearing capacity is increased. The settlement of composite foundation is decreased, when the replacement ratio of pile is increased. The test results also show that the load carried by inner soils is neglectable. According to the tests and application, it can be concluded that the new type of pile is convenient to construction with high bearing capacity and reliable quality, which has great potential in practical engineering.展开更多
Taking the effect of finite soil layers below pile end into account,the longitudinal dynamic response of pile undergoing dynamic loading in layered soil was theoretically investigated.Firstly,finite soil layers below ...Taking the effect of finite soil layers below pile end into account,the longitudinal dynamic response of pile undergoing dynamic loading in layered soil was theoretically investigated.Firstly,finite soil layers below pile end are modeled as virtual soil pile whose cross-section area is the same as that of the pile and the soil layers surrounding the pile are described by the plane strain model.Then,by virtue of Laplace transform and impedance function transfer method,the analytical solution of longitudinal dynamic response at the pile head in frequency domain is yielded.Also,the semi-analytical solution in time domain undergoing half-cycle sine pulse at the pile head is obtained by means of inverse Laplace transform.Based on these solutions,a parametric study is conducted to analyze emphatically the effects of parameters of soil below pile end on velocity admittance and reflected wave signals at the pile head.Additionally,a comparison with other models with different supporting conditions from soil below pile end is performed to verify the model presented.展开更多
基金The work was supported by the National Natural Science Foundation of China(Grant No.51978540).
文摘The composite pile consisting of core-pile and surrounding cement-enhanced soil is a promising pile foundation in recent years.However,how and to what extent the cement-enhanced soil influences the ultimate lateral resistance has not been fully investigated.In this paper,the ultimate lateral resistance of the composite pile was studied by finite element limit analysis(FELA)and theoretical upper-bound analysis.The results of FELA and theoretical analysis revealed three failure modes of laterally loaded composite piles.The effects of the enhanced soil thickness,strength,and pile-enhanced soil interface characteristics on the ultimate lateral resistance were studied.The results show that increasing the enhanced soil thickness leads to a significant improvement on ultimate lateral resistance factor(N P),and there is a critical thickness beyond which the thickness no longer affects the N P.Increasing the enhanced soil strength induced 6.2%-232.6%increase of N P.However,no noticeable impact was detected when the enhanced soil strength was eight times higher than that of the natural soil.The maximum increment of N P is only 30.5%caused by the increase of interface adhesion factor(a).An empirical model was developed to calculate the N P of the composite pile,and the results show excellent agreement with the analytical results.
基金support from the Exploring Youth Project of Zhejiang Natural Science Foundation (Grant No.LQ24E080009)the Key Project of Natural Science Foundation of Zhejiang Province (Grant No.LXZ22E080001)the National Natural Science Foundation of China (Grant No.52108347).
文摘A rigorous analytical model is developed for simulating the vibration behaviors of large-diameter openended pipe piles(OEPPs)and surrounding soil undergoing high-strain impact loading.To describe the soil behavior,the soil along pile shaft is divided into slip and nonslip zones and the base soil is modeled as a fictitious-soil pile(FSP)to account for the wave propagation in the soil.True soil properties are adopted and slippage at the pile-soil interface is considered,allowing realistic representation of largediameter OEPP mechanics.The developed model is validated by comparing with conventional models and finite element method(FEM).It is further used to successfully simulate and interpret the behaviors of a steel OEPP during the offshore field test.It is found that the variation in the vertical vibrations of shaft soil along radial direction is significant for large-diameter OEPPs,and the velocity amplitudes of the internal and external soil attenuate following different patterns.The shaft soil motion may not attenuate with depth due to the soil slippage,while the wave attenuation at base soil indicates an influence depth,with a faster attenuation rate than that in the pile.The findings from the current study should aid in simulating the vibration behaviors of large-diameter OEPP-soil system under high-strain dynamic loading.
文摘Based on the idea of optimization design of pile type, the two kinds of the typical pile type are selected, which containing flexibility pile (e.g. rammed cement-soil pile is for short RCSP), and rigid pile (e.g. cement-flyash-gravel pile is for short CFGP). The three kinds of the composite foundation are designed, which are CFGP, CFG long pile and CFG short pile (for short CFGLP-CFGSP), CFG long-short pile and rammed cement-soil short pile (for short CFGLP-RCSSP). Natural earthquake is simulated by using the engineering blasting;the dynamic characteristics and dynamic response of the composite foundation are studied through field test. CFGLP-RCSSP is closed to linear relation. The bearing capacity of the four composite foundation of the CFGP, CFGLP-CFGSP, and CFGLP-RCSSP in the site are 225 kPa, 179 kPa, and 197 kPa, separately increases 150%, 98.8% and 119% compared to the natural foundation. The vibration main frequency is mainly depended on properties of foundation soil and piles between vibration source and measuring point, pilling load value. Horizontal vibration main frequency greater than the vertical vibration main frequency and the vertical vibration main frequency close to the first-order natural frequency of composite foundation. With the pilling load increasing, the CFGLP-RCSSP pile composite foundation combined frequency decreased. Under the same blast energy, the acceleration peak on the CFG pile composite foundation is less than CFGLP-CFGSP the corresponding values, as the load increases, the peak acceleration gently. CFG pile composite foundation is favorable on seismic. The distribution of peak acceleration is consistent within 4 m from pile top in the CFGLP_RCSSP composite foundation. The maximum of the horizontal acceleration peak along the pile body occurs at a distance of pile top 4 m or the pile top, and that of vertical acceleration peak occurred at a pile top.
基金the financial support by the National Key R&D Program of China(No.2018YFC1504901)Gansu Province Youth Science and Technology Fund program,China(Grant No.21JR7RA739)+1 种基金Natural Science Foundation of Gansu Province,China(Grant No.21JR7RA738)Natural Science Foundation of Gansu Province,China(No.145RJZA068)。
文摘Despite the continuous advancements of engineering construction in high-intensity areas,many engineering landslides are still manufactured with huge thrust force,and double-row piles are effective to control such large landslides.In this study,large shaking table test were performed to test and obtain multi-attribute seismic data such as feature image,acceleration,and dynamic soil pressure.Through the feature image processing analysis,the deformation characteristics for the slope reinforced by double-row piles were revealed.By analyzing the acceleration and the dynamic soil pressure time domain,the spatial dynamic response characteristics were revealed.Using Fast Fourier Transform and half-power bandwidth,the damping ratio of acceleration and dynamic soil pressure was obtained.Following that,the Seism Signal was used to calculate the spectral displacement of the accelerations to obtain the regional differences of spectral displacement.The results showed that the overall deformation mechanism of the slope originates from tension failure in the soil mass.The platform at the back of the slope was caused by seismic subsidence,and the peak acceleration ratio was positively correlated with the relative pile heights.The dynamic soil pressure of the front row piles showed an inverted"K"-shaped distribution,but that of the back row piles showed an"S"-shaped distribution.The predominant frequency of acceleration was 2.16 Hz,and the main frequency band was 0.7-6.87 Hz;for dynamic soil pressure,the two parameters became 1.15 Hz and 0.5-6.59 Hz,respectively.In conclusion,dynamic soil pressure was more sensitive to dampening effects than acceleration.Besides,compared to acceleration,dynamic soil pressure exhibited larger loss factors and lower resonance peaks.Finally,back row pile heads were highly sensitive to spectral displacement compared to front row pile heads.These findings may be of reference value for future seismic designs of double-row piles.
基金Project(51208071)supported by the National Natural Science Foundation of ChinaProject(2010CB732106)supported by the National Basic Research Program of China
文摘Effect of soil displacement on friction single pile in the cases of tunneling,surcharge load and uniform soil movement was discussed in details with finite element method.Lateral displacement of the pile caused by soil displacement reached about 90% of the total displacement,which means that P-Δ effect of axial load can be neglected.The maximum moment of pile decreased from 159 kN·m to 133 kN·m in the case of surcharge load when the axial load increased from 0 to the ultimate load.When deformation of pile caused by soil displacement is large,axial load applied on pile-head plays the role of reducing the maximum bending moment in concrete pile to some extent.When pile is on one side of the tunnel,soil displacements around the pile are all alike,which means that the soil pressures around the pile do not decrease during tunneling.Therefore,Q-s curve of the pile affected by tunneling is very close to that of pile in static loading test.Bearing capacities of piles influenced by surcharge load and uniform soil movement are 2480 kN and 2630 kN,respectively,which are a little greater than that of the pile in static loading test(2400 kN).Soil pressures along pile increase due to surcharge load and uniform soil movement,and so do the shaft resistances along pile,as a result,when rebars in concrete piles are enough,bearing capacity of pile affected by soil displacement increases compared with that of pile in static loading test.
基金The Ministry of Education,Government of India,for the financial assistance provided during the research work。
文摘Pile foundations are still the preferred foundation system for high-rise structures in earthquake-prone regions.Pile foundations have experienced failures in past earthquakes due to liquefaction.Research on pile foundations in liquefiable soils has primarily focused on the pile foundation behavior in two or three-layered soil profiles.However,in natural occurrence,it may occur in alternative layers of liquefiable and non-liquefiable soil.However,the experimental and/or numerical studies on the layered effect on pile foundations have not been widely addressed in the literature.Most of the design codes across the world do not explicitly mention the effect of sandwiched non-liquefiable soil layers on the pile response.In the present study,the behavior of an end-bearing pile in layered liquefiable and non-liquefiable soil deposit is studied numerically.This study found that the kinematic bending moment is higher and governs the design when the effect of the sandwiched non-liquefied layer is considered in the analysis as opposed to when its effect is ignored.Therefore,ignoring the effect of the sandwiched non-liquefied layer in a liquefiable soil deposit might be a nonconservative design approach.
基金supported by the National Natural Science Foundation of China (Grant Nos.52379104,42202298)Joint fund of National Natural Science Foundation of China-Railway Corporation for basic research of high-speed railway (Grant No.U1934208).
文摘Artificially cemented soils have been widely used as filling materials in highway and railway construction.The shear strength evolution of filling materials upon moist variation can determine the stability of subgrade and embankments.This study conducted water retention tests,MIP tests,and multi-stage triaxial shear tests on cement-treated granite residual soil(GRS)to determine its water retention curve(WRC)upon free drying,pore structure,and peak shear strength qf,respectively.The water retention behavior and shear strength evolution upon free drying were modeled based on the dual-porosity structure of cement-treated GRS and the effective stress principle,respectively.Results show that the drying-WRC is bimodal and higher cement dosage yields a more severe decrease in the water retention capacity within a specific suction range.For a given confining pressure,the peak shear strength qf increased with increasing cement dosage or suction value s.The peak shear strength qf also solely depends on the suction value in the peak stress state.In addition,the cement-treated GRS has a bimodal pore size distribution curve,and its macro-and micro-void ratios remain almost unchanged after free drying.The bimodal drying-WRC of the cement-treated GRS can be modeled by differentiating the water retention mechanisms in macro-and micro-pores.Moreover,using the macro-pore degree of saturation as the effective stress parameterχ=S_(rM),the q_(f)–p′_(f)relationship(where p′_(f)is the effective mean pressure at failure)under various suction and stress conditions can be unified,and the q_(f)–s relationships at various net confining pressuresσ_(3),net can be well reproduced.These findings can help design subgrade and embankments constructed by artificially cemented GRS and assess their safe operation upon climate change.
基金National Natural Science Foundation of China under Grand No.51808190the Central Government Guides Local Science and Technology Development Fund Projects under Grand No.XZ202301YD0019C+2 种基金the Foundation of Key Laboratory of Soft Soils and Geoenvironmental Engineering(Zhejiang University)Ministry of Education under Grand No.2022P04the Central University Basic Research Fund of China under Grand No.B220202017。
文摘This research is concentrated on the longitudinal vibration of a tapered pipe pile considering the vertical support of the surrounding soil and construction disturbance.First,the pile-soil system is partitioned into finite segments in the vertical direction and the Voigt model is applied to simulate the vertical support of the surrounding soil acting on the pile segment.The surrounding soil is divided into finite ring-shaped zones in the radial direction to consider the construction disturbance.Then,the shear complex stiffness at the pile-soil interface is derived by solving the dynamic equilibrium equation for the soil from the outermost to innermost zone.The displacement impedance at the top of an arbitrary pile segment is obtained by solving the dynamic equilibrium equation for the pile and is combined with the vertical support of the surrounding soil to derive the displacement impedance at the bottom of the upper adjacent segment.Further,the displacement impedance at the pile head is obtained based on the impedance function transfer technique.Finally,the reliability of the proposed solution is verified,followed by a sensitivity analysis concerning the coupling effect of the pile parameters,construction disturbance and the vertical support of the surrounding soil on the displacement impedance of the pile.
基金supported by the National Natural Science Foundation of China(Grant No.41971086)Natural Science Foundation of Shanxi Province(Grant No.2023-JC-QN-0626,2022JQ-467).
文摘In permafrost regions with warm frozen soil,subgrade thaw-collapse phenomenon commonly occurs,facing thaw collapse problems of the existed frozen soil subgrade,thus it is difficult to use traditional methods such as active cooling and passive protection technology to stabilize the existed warm frozen soil subgrade.This study derives a novel stabilizer method,a long-short(L-S)cement-mixed batter pile composite foundation to stabilize the existed warm frozen soil subgrade.To solve the thawcollapse problems in warm frozen soil subgrade,high water content and large compressibility characteristics were compared between soft soil and warm frozen soils.Theoretical analysis of heat conduction and numerical simulation of finite element model were used to study the freeze–thaw process and evaluate the stabilized effects of the L-S cement-mixed batter piles on the warm frozen soil foundation of the Qinghai-Tibet Highway.Furthermore,the thaw process and mechanical properties of foundation and piles were analyzed by introducing the hydration heat factor in the thermodynamic control equation.The results indicate that the thawing displacement of the existed warm frozen soil subgrade was reduced owing to the“support”and“grasp”effects of the L-S cement-mixed batter piles on the surrounding soil.The composite ground formed by strengthening the warm frozen ground with batter piles could considerably improve the bearing capacity of the existed warm frozen ground,effectively restrain the deformation of the upper embankment,and improve the strength of the ground.The analysis can provide method for the construction design of cement mixing batter pile foundation in cold regions.
基金Project(51208071)supported by the National Natural Science Foundation of ChinaProject(2010CB732106)supported by the National Basic Research Program of China
文摘The couple effect of soil displacement and axial load on the single inclined pile in cases of surcharge load and uniform soil movement is discussed in detail with the methods of full-scale field tests and finite element method. Parametric analyses including the degree of inclination and the distance between soil and pile are carried out herein. When the displacement of soil on the left side and right side of a pile is identical, deformation of a vertical pile and an inclined pile is highly close in both cases of surcharge load and uniform soil movement. When the couple effect of soil displacement and axial load occurs, settlement of an inclined pile is greater than that of a vertical pile under the same axial load, and bearing capacity of an inclined pile is smaller than that of a vertical pile. This is quite different from the case when the inclined pile is not affected by soil displacement. For inclined piles, P-Δ effect of axial load would lead to a large increase in bending moment, however, for the vertical pile, P-Δ effect of axial load can be neglected. Although the direction of inclination of piles is reverse, deformation of piles caused by uniform soil movement is totally the same. For the inclined piles discussed herein, bending moment(-8 m to-17 m under the ground) relies heavily on uniform soil movement and does not change during the process of applying axial load. When the thickness of soil is less than the pile length, the greater the thickness of soil, the larger the bending moment at lower part of the inclined pile. When the thickness of soil is larger than the pile length, bending moment at lower part of the inclined pile is zero.
文摘The electrical resistivity characteristics of cement soil and flyash lime soil are investigated in the laboratory and the field. It is shown that the electrical resistivities of the cement soil and flyash lime soil are sensitive to water content, degree of saturation and unconfined strength. The cement soil and flyash lime soil with higher water content, greater degree of saturation, lower unconfined strength has lower electrical resistivity. Electrical resistivity is also correlated with additives. Based on the tests, it is concluded that the electrical resistivity method is available for checking the effectiveness of the soil improvement by the cement soil and flyash lime soil mixing pile in terms of engineering practice.
基金Major Research Plan of National Natural Science Foundation of China under Grant No.90815009the National Natural Science Foundation of China under Grant Nos.51108134,50378031 and 50178027
文摘A shake-table experiment on pile foundations in liquefi able soils composed of liquefi able sand and overlying soft clay is studied. A three-dimensional(3D) effective stress fi nite element(FE) analysis is employed to simulate the experiment. A recently developed multi-surface elasto-plastic constitutive model and a fully coupled dynamic inelastic FE formulation(u-p) are used to model the liquefaction behavior of the sand. The soil domains are discretized using a solid-fl uid fully coupled(u-p) 20-8 noded brick element. The pile is simulated using beam-column elements. Upon careful calibration, very good agreement is obtained between the computed and the measured dynamic behavior of the ground and the pile. A parametric analysis is also conducted on the model to investigate the effect of pile-pinning, pile diameter, pile stiffness, ground inclination angle, superstructure mass and pile head restraints on the ground improvement. It is found that the pile foundation has a noticeable pinning effect that reduces the lateral soil displacement. It is observed that a larger pile diameter and fi xed pile head restraints contribute to decreasing the lateral pile deformation; however, a higher ground inclination angle tends to increase the lateral pile head displacements and pile stiffness, and superstructure mass seems to effectively infl uence the lateral pile displacements.
基金supported by the National Natural Science Foundation of China (Grant No.50309009)the National High Technology Research and Development Program of China(863 Program,Grant No.2004AA616100)
文摘Long steel piles with large diameters have been more widely used in the field of ocean engineering. Owing to the pile with a large diameter, soil plug development during pile driving has great influences on pile driveability and bearing capacity. The response of soil plug developed inside the open-ended pipe pile during the dynamic condition of pile-driving is different from the response under the static condition of loading during service. This paper addresses the former aspect. A numerical procedure for soil plug effect prediction and pile driveabihty analysis is proposed and described. By taking into consideration of the pile dimension effect on side and tip resistance, this approach introduces a dimensional coefficient to the conventional static eqnihbrium equations for the plug differential unit and proposes an improved static equity method for the plug effect prediction. At the same time, this approach introduces a simplified model by use of one-dimensional stress wave equation to simulate the interaction between soil plug and pile inner wall. The proposed approach has been applied in practical engineering analyses. Results show that the calculated plug effect and pile driveabihty based on the proposed approach agree well with the observed data.
基金Project(51478165)supported by the National Natural Science Foundation of ChinaProject(2013B31814+1 种基金2014B07214)supported by the Fundamental Research Funds for the Central UniversitiesChina
文摘A small-scale physical modelling method was developed to investigate the pile bearing capacity and the soil displacement around the pile using transparent soil and particle image velocimetry(PIV) technique. Transparent sand was made of baked quartz and a pore fluid with a matching refractive index. The physical modelling system consists of a loading system, a laser light, a CCD camera, an optical platform and a computer for image analyzing. A distinctive laser speckle was generated by the interaction between the laser light and transparent soil. Two laser speckle images before and after deformation were used to calculate the soil displacement field using PIV. Two pipe piles with different diameters under oblique pullout loads at angles of 0°, 30°, 45°, 60° and 90° were used in tests. The load-displacement response, oblique pullout ultimate resistances and soil displacement fields were then studied. The test results show that the developed physical modelling method and transparent soil are suitable for pile-soil interaction problems. The soil displacements around the pipe piles will improve the understanding on the capacity of pipe piles under oblique pullout loads.
基金The 111 Project under Grant No.B13024the National Natural Science Foundation of China under Grant Nos.U1134207 and 51378177the Program for New Century Excellent Talents in University under Grant No.NCET-12-0843
文摘This study considers the torsional vibration of a pipe pile in a transversely isotropic saturated soil layer. Based on Biot's poroelastic theory and the constitutive relations of the transversely isotropic medium, the dynamic governing equations of the outer and inner transversely isotropic saturated soil layers are derived. The Laplace transform is used to solve the governing equations of the outer and inner soil layers. The dynamic torsional response of the pipe pile in the frequency domain is derived utilizing 1D elastic theory and the continuous conditions at the interfaces between the pipe pile and the soils. The time domain solution is obtained by Fourier inverse transform. A parametric study is conducted to demonstrate the influence of the anisotropies of the outer and inner soil on the torsional dynamic response of the pipe pile.
基金Projects(51378464,51309207)supported by the National Natural Science Foundation of China
文摘The dynamic response of pile in layered soil is theoretically investigated when considering the transverse inertia effect.Firstly, the fictitious soil-pile model is employed to simulate the dynamic interaction between the pile and the soil layers beneath pile toe. The dynamic interactions of adjacent soil layers along the vertical direction are simplified as distributed Voigt models.Meanwhile, the pile and fictitious soil-pile are assumed to be viscoelastic Rayleigh-Love rods, and both the radial and vertical displacement continuity conditions at the soil-pile interface are taken into consideration. On this basis, the analytical solution for dynamic response at the pile head is derived in the frequency domain and the corresponding quasi-analytical solution in the time domain is then obtained by means of the convolution theorem. Following this, the accuracy and parameter value of the hypothetical boundaries for soil-layer interfaces are discussed. Comparisons with published solution and measured data are carried out to verify the rationality of the present solution. Parametric analyses are further conducted by using the present solution to investigate the relationships between the transverse inertia effects and soil-pile parameters.
基金Project(BK2011618) supported by the Natural Science Foundation of Jiangsu Province, ChinaProject(51108288) supported by the National Natural Science Foundation of China
文摘The improvement of question soils with cement shows great technical, economic and environmental advantages. And interest in introducing electrical resistivity measurement to assess the quality of cement treated soils has increased markedly recently due to its economical, non-destructive, and relatively non-invasive advantages. This work aims to quantify the effect of cement content (aw), porosity (nt), and curing time(T) on the electrical resistivity (p) and unconfined compression strength (UCS) of cement treated soil. A series of electrical resistivity tests and UCS tests of cement treated soil specimen after various curing periods were carried out. A modified Archie empirical law was proposed taking into account the effect of cement content and curing period on the electrical resistivity of cement treated soil. The results show that nt/(aw·T) and nt/(aw·T^1/2) ratio are appropriate parameters to assess electrical resistivity and UCS of cement treated soil, respectively. Finally, the relationship between UCS and electrical resistivity was also established.
基金the Thailand Research Fund (TRF) for their financial support to this study
文摘Construction of seaside and underground wall bracing often uses stiffened deep cement mixed columns (SDCM). This research investigates methods used to improve the level of bearing capacity of these SDCM when subjected to cyclic lateral loading via various types of stiffer cores. Eight piles, two deep cement mixed piles and six stiffened deep cement mixing piles with three different types of cores, H shape cross section prestressed concrete, steel pipe, and H-beam steel, were embedded though soft clay into medium-hard clay on site in Thailand. Cyclic horizontal loading was gradually applied until pile failure and the hysteresis loops of lateral load vs. lateral deformation were recorded. The lateral carrying capacities of the SDCM piles with an H-beam steel core increased by 3-4 times that of the DCM piles. This field research clearly shows that using H-beam steel as a stiffer core for SDCM piles is the best method to improve its lateral carrying capacity, ductility and energy dissipation capacity.
基金Project(50679017) supported by the National Natural Science Foundation of China
文摘The construction process and load-bearing behaviors of Cast-in-place concrete thin-wall pipe piles are analyzed based on its application on Yantong Expressway Project. The low strain test, static load test and field excavation were also carried out, and the bearing capacity of the new pile can meet the requirements of design. With the increase of pile diameter, the bearing capacity is increased. The settlement of composite foundation is decreased, when the replacement ratio of pile is increased. The test results also show that the load carried by inner soils is neglectable. According to the tests and application, it can be concluded that the new type of pile is convenient to construction with high bearing capacity and reliable quality, which has great potential in practical engineering.
基金Project(50879077) supported by the National Natural Science Foundation of China
文摘Taking the effect of finite soil layers below pile end into account,the longitudinal dynamic response of pile undergoing dynamic loading in layered soil was theoretically investigated.Firstly,finite soil layers below pile end are modeled as virtual soil pile whose cross-section area is the same as that of the pile and the soil layers surrounding the pile are described by the plane strain model.Then,by virtue of Laplace transform and impedance function transfer method,the analytical solution of longitudinal dynamic response at the pile head in frequency domain is yielded.Also,the semi-analytical solution in time domain undergoing half-cycle sine pulse at the pile head is obtained by means of inverse Laplace transform.Based on these solutions,a parametric study is conducted to analyze emphatically the effects of parameters of soil below pile end on velocity admittance and reflected wave signals at the pile head.Additionally,a comparison with other models with different supporting conditions from soil below pile end is performed to verify the model presented.