期刊文献+
共找到7,604篇文章
< 1 2 250 >
每页显示 20 50 100
Reinforcement Technology for Soft Soil Roadbed in the Widened Section of Expressway Expansion
1
作者 Zhiqiang Qiu Yun Shi Lei Jiang 《Journal of World Architecture》 2024年第2期25-30,共6页
This article examines the soft soil roadbed reinforcement technology for widened sections of highways in a specific project.It provides an overview of the project,the principles of soft soil roadbed reinforcement tech... This article examines the soft soil roadbed reinforcement technology for widened sections of highways in a specific project.It provides an overview of the project,the principles of soft soil roadbed reinforcement technology for wide sections,and its practical application.The analysis aims to offer guidance on applying soft soil roadbed wide section reinforcement technology and enhancing the overall quality of similar projects. 展开更多
关键词 EXPRESSWAY Expansion project Widened section Soft soil roadbed reinforcement treatment
下载PDF
Reinforcement effects of ground treatment with dynamic compaction replacement in cold and saline soil regions 被引量:2
2
作者 Yu Zhang JianKun Liu +1 位作者 JianHong Fang AnHua Xu 《Research in Cold and Arid Regions》 CSCD 2013年第4期440-443,共4页
The mechanical property of saline soils varies with moisture and climate in the cold and salt lake region of Qinghai-Tibet Plateau, which influences project construction. In order to improve foundation reinforcement e... The mechanical property of saline soils varies with moisture and climate in the cold and salt lake region of Qinghai-Tibet Plateau, which influences project construction. In order to improve foundation reinforcement effect of the QarharvaTrolmud Highway, Qinghai Province, China, dynamic compaction replacement (DCR) composite foundation was applied in saline soils. A field experiment was conducted in this area, where strength and working mechanism of pier-soil and deformation modulus of the composite foundation was analyzed after reinforcement. This paper presents methods for determining the coefficient on the bearing capacity evaluation and deformation modulus of composite foundation with DC1L Reinforcement case of DCR is highly effective in saline soils of the salt lake regions, which helps the mi-tion of water and salt in saline soils. 展开更多
关键词 dynamic compaction replacement saline soils reinforcement effects
下载PDF
Effect of discrete fibre reinforcement on soil tensile strength 被引量:8
3
作者 Jian Li Chaosheng Tang +2 位作者 Deying Wang Xiangjun Pei Bin Shi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第2期133-137,共5页
The tensile behaviour of soil plays a significantly important role in various engineering applications. Compacted soils used in geotechnical constructions such as dams and clayey liners in waste containment facilities... The tensile behaviour of soil plays a significantly important role in various engineering applications. Compacted soils used in geotechnical constructions such as dams and clayey liners in waste containment facilities can suffer from cracking due to tensile failure. In order to increase soil tensile strength, discrete fibre reinforcement technique was proposed. An innovative tensile apparatus was developed to deter- mine the tensile strength characteristics of fibre reinforced soil. The effects of fibre content, dry density and water content on the tensile strength were studied. The results indicate that the developed test apparatus was applicable in determining tensile strength of soils. Fibre inclusion can significantly in- crease soil tensile strength and soil tensile failure ductility. The tensile strength basically increases with increasing fibre content. As the fibre content increases from 0% to 0.2%, the tensile strength increases by 65.7%. The tensile strength of fibre reinforced soil increases with increasing dry density and decreases with decreasing water content. For instance, the tensile strength at a dry density of 1.7 Mg/m^3 is 2.8 times higher than that at 1.4 Mg/m^3. It decreases by 30% as the water content increases from 14.5% to 20.5%. Furthermore, it is observed that the tensile strength of fibre reinforced soil is dominated by fibre pull-out resistance, depending on the interracial mechanical interaction between fibre surface and soil matrix. 展开更多
关键词 Fibre reinforced soil Tensile strength Direct tensile test Fibre contentDry density Water content
下载PDF
Estimation of soil reinforcement by the roots of four postdam prevailing grass species in the riparian zone of Three Gorges Reservoir, China 被引量:15
4
作者 ZHONG Rong-hua HE Xiu-bin +5 位作者 BAO Yu-hai TANG Qiang GAO Jin-zhang YAN Dan-dan WANG Ming-feng LI Yu 《Journal of Mountain Science》 SCIE CSCD 2016年第3期508-521,共14页
Soil erosion and bank degradation is a major post-dam concern regarding the riparian zone of the Three Gorges Reservoir. The development and succession of vegetation is a main countermeasure,especially to enhance bank... Soil erosion and bank degradation is a major post-dam concern regarding the riparian zone of the Three Gorges Reservoir. The development and succession of vegetation is a main countermeasure,especially to enhance bank stability and mitigate soil erosion by the root system. In this study, the roots of four prevailing grass species, namely, Cynodon dactylon, Hemarthria altissima, Hemarthria compressa, and Paspalum paspaloides, in the riparian zone were investigated in relation to additional soil cohesion. Roots were sampled using a single root auger. Root length density(RLD) and root area ratio(RAR) were measured by using the Win RHIZO image analysis system. Root tensile strength(TR) was performed using a manualdynamometer, and the soil reinforcement caused by the roots was estimated using the simple Wu's perpendicular model. Results showed that RLD values of the studied species ranged from 0.24 cm/cm3 to20.89 cm/cm3 at different soil layers, and RLD were significantly greater at 0–10 cm depth in comparison to the deeper soil layers(>10 cm). RAR measurements revealed that on average 0.21% of the reference soil area was occupied by grass roots for all the investigated species. The measured root tensile strength was the highest for P. paspaloides(62.26MPa) followed by C. dactylon(51.49 MPa), H.compressa(50.66 MPa), and H. altissima(48.81MPa). Nevertheless, the estimated maximum root reinforcement in this investigation was 22.5 k Pa for H.altissima followed by H. compressa(21.1 k Pa), P.paspaloides(19.5 k Pa), and C. dactylon(15.4 k Pa) at0–5 cm depth soil layer. The root cohesion values estimated for all species were generally distributed at the 0–10 cm depth and decreased with the increment of soil depth. The higher root cohesion associated with H. altissima and H. compressa implies their suitability for revegetation purposes to strengthen the shallow soil in the riparian zone of the Three Gorges Reservoir. Although the soil reinforcement induced by roots is only assessed from indirect indicators, the present results still useful for species selection in the framework of implementing and future vegetation recovery actions in the riparian zone of the Three Gorges Reservoir and similar areas in the Yangtze River Basin. 展开更多
关键词 水库消落区 土壤加固 模型估计 三峡库区 草种 波茨坦 扁穗牛鞭草 物种选择
下载PDF
Quantitative analysis of biotechnical reinforcement for a steep slope consisting of composite coal-gangue-soil medium adjacent to a mined-out area 被引量:3
5
作者 Xingping Lai Mowen Xie +1 位作者 Fenhua Ren Meifeng Cai 《Journal of University of Science and Technology Beijing》 CSCD 2005年第6期489-494,共6页
The engineering and geological characteristics of a steep slope consisting of coal gangue, rock and soil medium in Huating coal mine have been comprehensively investigated. Owing to humid weather, heavy rainfall, vege... The engineering and geological characteristics of a steep slope consisting of coal gangue, rock and soil medium in Huating coal mine have been comprehensively investigated. Owing to humid weather, heavy rainfall, vegetation and porous characteristics of the soil and rock mass, the steep slope will be destabilized and induce mud-rock flow or derive hazard easily. Firstly, based on the classical slope reinforcement theory, some regularity between the shear and displacement in the destabilized zone of the slope with or without root strength contribution is presented. Then, based on the experimental and statistical analysis of root strength, hydrological characteristics and stability status, etc., some possible biotechnical techniques for reinforcement of the steep slope have been suggested. These methods are important for quantitative analysis of destabilization of the slope and design of the biotechnical reinforcement. 展开更多
关键词 mined-out area coal-gangue-soil composite medium steep slope root-soil effect biotechnical reinforcement
下载PDF
Effect of geogrid reinforcement on soft and medium dense soils 被引量:1
6
作者 JEON Sang-Soo 《Journal of Central South University》 SCIE EI CAS 2011年第5期1638-1645,共8页
The field tests were carried out to examine the reinforcement effect of a geogrid on various conditions of embankment height,the number of passages of vibratory roller,the number of reinforced layer of geogrid,and soi... The field tests were carried out to examine the reinforcement effect of a geogrid on various conditions of embankment height,the number of passages of vibratory roller,the number of reinforced layer of geogrid,and soil properties.The test results of the dynamic earth pressure indicate that the soil reinforced by geogrid is very effective to increase the stiffness of soil,especially in soft soil.The dynamic earth pressure ratio,which is defined as the ratio of dynamic earth pressure to self weight of soils,exponentially decreases as the embankment height increases.The dynamic earth pressure ratio increases up to 80% for soft soils reinforced by both one layer of geogrid in place of no reinforced soils and two layers in place of a single layer of geogrid. 展开更多
关键词 土工格栅加筋 土壤特性 加固效果 路基高度 振动压路机 实地测试 压力测试 土压力
下载PDF
Material Properties and Tensile Behaviors of Polypropylene Geogrid and Geonet for Reinforcement of Soil Structures
7
作者 张季如 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2002年第3期83-86,共4页
The properties and tensile behaviors of polypropylene (PP) geogrids and geonets for reinforcement of soil structures are investigated.Mass per unit area of the geogrids and geonets was weighed using an electronic bala... The properties and tensile behaviors of polypropylene (PP) geogrids and geonets for reinforcement of soil structures are investigated.Mass per unit area of the geogrids and geonets was weighed using an electronic balance and aperture sizes of the geonets were exactly measured using a computer.Laboratory tests were performed using a small tensile machine capable of monitoring tensile force and displacement.Tensile failure behaviors were described,and tensile index properties such as tensile strength,maximum tensile strain,tensile forces corresponding to different strains in the geogrids and gronets were obtained.The characterization of these indexes is discussed. 展开更多
关键词 material property tensile behavior POLYPROPYLENE GEOGRID GEONET reinforcement of soil structure
下载PDF
Reinforcement of Clay Soils through Fracture Grouting
8
作者 Shaozhen Cheng Tielin Chen +2 位作者 Zizhou Xue Kang Zhu Jianke Li 《Fluid Dynamics & Materials Processing》 EI 2022年第6期1649-1665,共17页
Fracture grouting is widely used for building foundation reinforcement,however the underpinning mechanisms are still not clear.Using numerical results about a single-hole fracture grouting process as a basis,a model c... Fracture grouting is widely used for building foundation reinforcement,however the underpinning mechanisms are still not clear.Using numerical results about a single-hole fracture grouting process as a basis,a model composed of soil and grouting veins has been created to analyze the reinforcement mechanism.The influence weights of the grouting vein skeleton and compaction effect have been studied,thereby obtaining relevant information on the compressive modulus of the considered composite soil.The research results show that the compaction effect plays a leading role in the soil fracture grouting reinforcement.The grouting pressure,the hardened grouting vein modulus,and the shape of the grouting veins all influence the compressive modulus of the composite soil. 展开更多
关键词 Building foundation fracture grouting composite soil reinforcement mechanism reinforcement effect
下载PDF
Serviceability and Reinforcement of Low Content Whisker in Portland Cement 被引量:4
9
作者 曹明莉 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第4期749-753,共5页
In order to explore the serviceability and reinforcement of CaCO3 whisker in portland cement matrix, the durability of CaCO3 whisker and effect of low whisker content(0%-4.0%) on the working performance and mechanic... In order to explore the serviceability and reinforcement of CaCO3 whisker in portland cement matrix, the durability of CaCO3 whisker and effect of low whisker content(0%-4.0%) on the working performance and mechanical properties of portland cement were investigated. The experimental results show that CaCO3 whiskers have a good stability and serviceability in cement, and should not significantly alter the rheological properties of the cement paste. The flexural and compressive strength of portland cement reinforced by CaCO3 whiskers was increased by 33.3% and 12.83%, respectively. 展开更多
关键词 CaCO3 whisker portland cement SERVICEABILITY WORKABILITY reinforcement
下载PDF
Pseudo-static/dynamic solutions of required reinforcement force for steep slopes using discretization-based kinematic analysis 被引量:2
10
作者 Changbing Qin Siau Chen Chian 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第2期289-299,共11页
This paper presents a procedure for assessing the reinforcement force of geosynthetics required for maintaining dynamic stability of a steep soil slope. Such a procedure is achieved with the use of the discretization ... This paper presents a procedure for assessing the reinforcement force of geosynthetics required for maintaining dynamic stability of a steep soil slope. Such a procedure is achieved with the use of the discretization technique and kinematic analysis of plasticity theory, i.e. discretization-based kinematic analysis. The discretization technique allows discretization of the analyzed slope into various components and generation of a kinematically admissible failure mechanism based on an associated flow rule.Accordingly, variations in soil properties including soil cohesion, internal friction angle and unit weight are accounted for with ease, while the conventional kinematic analysis fails to consider the changes in soil properties. The spatialetemporal effects of dynamic accelerations represented by primary and shear seismic waves are considered using the pseudo-dynamic approach. In the presence of geosynthetic reinforcement, tensile failure is discussed providing that the geosynthetics are installed with sufficient length. Equating the total rates of work done by external forces to the internal rates of work yields the upper bound solution of required reinforcement force, below which slopes fail. The reinforcement force is sought by optimizing the objective function with regard to independent variables, and presented in a normalized form. Pseudo-static analysis is a special case and hence readily transformed from pseudodynamic analysis. Comparisons of the pseudo-static/dynamic solutions calculated in this study are highlighted. Although the pseudo-static approach yields a conservative solution, its ability to give a reasonable result is substantiated for steep slopes. In order to provide a more meaningful solution to a stability analysis, the pseudo-dynamic approach is recommended due to considerations of spatial etemporal effect of earthquake input. 展开更多
关键词 GEOSYNTHETICS Pseudo-static/dynamic approach DISCRETIZATION technique Discretization-based kinematic analysis reinforced soil Seismic stability
下载PDF
Experimental study on the seismic performance of masonry wall reinforced by cement mortar and polypropylene band
11
作者 Zhao Wenyang Zhou Qiang +3 位作者 Min Quanhuan Yang Lingyu Sun Baitao Song Guquan 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第2期469-479,共11页
Since masonry structures are prone to collapse in earthquakes,a novel joint reinforcement method with a polypropylene band(PP-band)and cement mortar(CM)has been put forward.Compared with the common reinforcement metho... Since masonry structures are prone to collapse in earthquakes,a novel joint reinforcement method with a polypropylene band(PP-band)and cement mortar(CM)has been put forward.Compared with the common reinforcement methods,this method not only facilitates construction but also ensures lower reinforcement cost.To systematically explore the influence of joint reinforcement on the seismic performance of masonry walls,quasi-static tests were carried out on six specimens with different reinforcement forms.The test results show that the joint action of PP-band and CM can significantly improve the specimen′s brittle failure characteristics and enhance the integrity of the specimen after cracking.Compared with the specimen without reinforcement,each of the seismic performance indexes of the joint reinforced specimen had obvious improvement.The maximum increased rate about peak load and ductility of the joint reinforced specimen is 100.6%and 233.4%,respectively. 展开更多
关键词 joint reinforcement masonry structure quasi-static test cement mortar seismic performance
下载PDF
Multiphysics processes in the interfacial transition zone of fiber-reinforced cementitious composites under induced curing pressure and implications for mine backfill materials: A critical review
12
作者 Brett Holmberg Liang Cui 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第8期1474-1489,共16页
The mesoscale fiber-matrix interfacial transition zone(FM-ITZ) under induced curing pressure plays a key role in the effectiveness of fiber reinforcement and the engineering application of fiber-reinforced cementitiou... The mesoscale fiber-matrix interfacial transition zone(FM-ITZ) under induced curing pressure plays a key role in the effectiveness of fiber reinforcement and the engineering application of fiber-reinforced cementitious composites(FRCCs). This critical review establishes the link among induced curing pressure(i.e., external loading condition), multiphysics processes(i.e., internal governing mechanism), and interface behavior(i.e., material behavior) for FRCC materials through analysis of the state-of-the-art research findings on the FM-ITZ of FRCC materials. The following results are obtained. For the mechanical process, the induced curing pressure changes the stress state and enhances multicracking behavior, which can strengthen the FM-ITZ. For the hydraulic process, the strengthened seepage of the FM-ITZ under induced curing pressure weakens the effective stress and exaggerates the deficiency in water retention capacity between the bulk matrix and the FMITZ. For the thermal process, the induced curing pressure causes a steep temperature gradient in the FM-ITZ and thus influences the temperature evolution and thermally-induced microcracks in the FM-ITZ. For the chemical process, the induced curing pressure enhances hydration kinetics and results in the formation of additional hydration products in the FM-ITZ. Moreover, recommendations are proposed on the basis of findings from this review to facilitate the implementation of fiber reinforcement in cemented paste backfill technology. 展开更多
关键词 cemented paste backfill cementitious composites interfacial transition zone fiber reinforcement MULTIPHYSICS induced curing pressure
下载PDF
Weak Expansive Soil Physical Properties Modification by Means of a Cement-Jute Fiber
13
作者 Zisheng Yang Wendong Li +2 位作者 Xuelei Cheng Ran Hai Shunqun Li 《Fluid Dynamics & Materials Processing》 EI 2023年第8期2119-2130,共12页
Sixteen groups of comprehensive tests have been conducted to investigate the modifications in the physical properties of a weak expansive soil due to the addition of a cement jute fiber.The tests have been conducted t... Sixteen groups of comprehensive tests have been conducted to investigate the modifications in the physical properties of a weak expansive soil due to the addition of a cement jute fiber.The tests have been conducted to analyze the liquid plastic limit,the particle distribution and the free expansion rate.The results show that:(1)With an increase in the cement-jute fiber content,the free expansion rate of the modified expansive soil gradually decreases,however,such a rate rebounds when the fiber content exceeds 0.5%and the cement content exceeds 6%.(2)With an increase in the cement percentage,the particle unevenness coefficient(Cu)and curvature coefficient(Cc)of the modified expansive soil tend to grow gradually.The Cc coefficient reaches 1.0 when the cement content is 6%.The unevenness coefficient of 16 soil samples is greater than 5.0,however,the Cu coefficient decreases when the cement content reaches 6%.(3)The plastic limit of soil increases as the cement content is made higher,while the liquid limit and plastic index decrease gradually.When the content of the modified material is 2%+0.1%~2%+0.7%(Cement content+jute fiber content),the change of particle size distribution is most obvious.(4)When the contents of cement and jute fiber are is 6%and 0.5%,respectively,the modification induced in the physical properties of soil samples corresponds to the best case. 展开更多
关键词 cement jute fiber expansive soil EXPANSION optimal dosage
下载PDF
Site observations of weathered granitic soils subjected to cementation and partial drainage using SCPTU
14
作者 Xianwei Zhang Xinyu Liu +1 位作者 Ran An Xinming Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第4期984-996,共13页
Because of the cementation inherited from the parent rock,weathered granitic soil is usually susceptible to disturbance,which poses considerable challenges for laboratory characterization.The cone penetration test wit... Because of the cementation inherited from the parent rock,weathered granitic soil is usually susceptible to disturbance,which poses considerable challenges for laboratory characterization.The cone penetration test with pore pressure measurements has long been known for its reliability in site investigations and stratigraphic profiling.However,although extensive piezocone test results and experience are available for sedimentary soil,similar advances are yet to be made for weathered granitic soil.Moreover,the experience from sedimentary soil may not be directly applicable to weathered profiles because of the essentially different natures of the two types of geomaterials.This study performs seismic piezocone tests in a weathered granitic profile comprising residual granitic soil,completely weathered granite,and highly weathered granite.Pore pressure is measured at both the cone mid-face and the shoulder,and the effects of penetrometer size and penetration rate are considered.A series of updated soil behavior type charts is proposed to interpret the test results,thereby allowing the effect of weathering to be evaluated.This paper offers an important extension to the sparse data on the in situ responses of weathered materials. 展开更多
关键词 Weathered granite Seismic piezocone test cementATION soil classification Pore pressure Weathering degree
下载PDF
Expansive Soil Stabilization by Bagasse Ash in Partial Replacement of Cement
15
作者 Waleed Awadalseed Honghua Zhao +2 位作者 Hemei Sun Ming Huang Cong Liu 《Journal of Renewable Materials》 SCIE EI 2023年第4期1911-1935,共25页
This study examined the effects of using bagasse ash in replacement of ordinary Portland cement(OPC)in the treatment of expansive soils.The study concentrated on the compaction characteristics,volume change,compressiv... This study examined the effects of using bagasse ash in replacement of ordinary Portland cement(OPC)in the treatment of expansive soils.The study concentrated on the compaction characteristics,volume change,compressive strength,splitting tensile strength,microstructure,California bearing ratio(CBR)value,and shear wave velocity of expansive soils treated with cement.Different bagasse ash replacement ratios were used to create soil samples.At varying curing times of 7,14,and 28 days,standard compaction tests,unconfined compressive strength tests,CBR tests,Brazilian split tensile testing,and bender element(BE)tests were carried out.According to X-ray diffraction(XRD)investigations,quartz and crystobalite make up the majority of the minerals in bagasse ash.Bagasse ash contains a variety of grain sizes,including numerous fiber-shaped particles,according to a scanning electronic microscope(SEM)test.For all of the treated specimens with various replacement ratios,the overall additive content has not changed.The results of the Brazilian split tensile tests demonstrate improved tensile strength for all specimens with various replacement proportions.A lower maximum dry density and a greater optimal water content would result from the substitution of bagasse ash.When the replacement ratio is not more than 20%,the CBR values of the parts replaced specimens are even higher than the cement treatments.The results of BE testing on the treated soils show that there is significant stiffness anisotropy but that it steadily diminishes with curing time and replacement ratio.According to the study,bagasse ash is a useful mineral additive,and the best replacement ratio(CBA20)is 20%. 展开更多
关键词 Expansive soil bagasse ash cement calcium silicate hydrate(CSH) stiffness anisotropy
下载PDF
Effect of natural and synthetic fibers reinforcement on California bearing ratio and tensile strength of clay 被引量:1
16
作者 Mahdi Ghasemi Nezhad Alireza Tabarsa Nima Latifi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第3期626-642,共17页
Use of environmentally friendly approaches with the purpose of strengthening soil layers along with finding correlations between the mechanical characteristics of fiber-reinforced soils such as indirect tensile streng... Use of environmentally friendly approaches with the purpose of strengthening soil layers along with finding correlations between the mechanical characteristics of fiber-reinforced soils such as indirect tensile strength(ITS)and California bearing ratio(CBR)and as well as the evaluation of shear strength parameters obtained from the triaxial test would be very effective at geotechnical construction sites.This research was aimed at investigating the influence of natural fibers as sustainable ones including basalt(BS)and bagasse(BG)as well as synthetic polyester(PET)fibers on the strength behavior of clayey soil.To this end,the effects of various fiber contents(0.5%,1%and 2%)and lengths(2.5 mm,5 mm and 7.5 mm)were experimentally evaluated.By conducting ITS and CBR tests,it was found that increasing fiber content and length had a significant influence on CBR and ITS values.Moreover,2%of 7.5 mm-long fibers led to the largest values of CBR and ITS.The CBR values of soil reinforced with PET,BS,and BG fibers were determined as 19.17%,15.43%and 13.16%,respectively.The ITS values of specimens reinforced with PET,BS,and BG fibers were reported as 48.57 kPa,60.7 kPa and 47.48 kPa,respectively.The results of the triaxial compression test revealed that with the addition of BS fibers,the internal friction angle increased by about 100%,and with the addition of PET fibers,the cohesion increased by about 70%.Moreover,scanning electron microscope(SEM)analysis was employed to confirm the findings.The relationship between CBR and ITS values,obtained via statistical analysis and used for the optimum design of road pavement layers,demonstrated that these parameters had high correlation coefficients.The outcomes of multiple linear regression and sensitivity analysis also confirmed that the fiber content had a greater effect on CBR and ITS values than fiber length. 展开更多
关键词 Natural fibers Synthetic fibers Indirect tensile strength(ITS) California bearing ratio(CBR) reinforced soil
下载PDF
Corrosion Behavior of Reinforcement Steel Embedded in Cement Mortars Using Different Protection Systems 被引量:1
17
作者 Evgenia Voulgari Aggeliki Zacharopoulou +1 位作者 Nikolaos Chousidis George Batis 《Materials Sciences and Applications》 2019年第6期461-474,共14页
Although reinforced concrete structures are able to withstand towards a variety of adverse environmental conditions, reinforcement corrosion could lead to concrete structure deterioration. The present study examines f... Although reinforced concrete structures are able to withstand towards a variety of adverse environmental conditions, reinforcement corrosion could lead to concrete structure deterioration. The present study examines four different ways of using corrosion inhibitors against pitting corrosion. In particular, it was investigated the chloride penetration resistance of reinforced cement mortars using corrosion inhibitor applied in three different ways. The corrosion behavior of the specimens was evaluated by electrochemical methods such as Linear Polarization Resistance and Halfcell Potential Resistance. In addition, the mass loss of steel rebars against time of partially immersion in sodium chloride (NaCl) solution was carried out in the lab. The experimental results showed that the corrosion systems examined in the study provide anticorrosion protection on steel rebars against chlorides comparing with the reference group. 展开更多
关键词 cement MORTARS reinforcement STEEL PITTING CORROSION CORROSION Inhibitors Chloride Ions Electrochemical Measurements Mass Loss
下载PDF
Soil-cement mixture properties and design considerations for reinforced excavation 被引量:5
18
作者 Jianguo Fan Dongyuan Wang Duo Qian 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第4期791-797,共7页
soil-cement is a mixture produced by grouting or mixing cement with soils. This paper reviews and discusses the general classifications of grouting techniques and the suitability of their applications.The mechanical p... soil-cement is a mixture produced by grouting or mixing cement with soils. This paper reviews and discusses the general classifications of grouting techniques and the suitability of their applications.The mechanical properties of soil-cement mixture and the influence of sodium silicate added are discussed. Design considerations for deep soil mixed wall(DSMW) for excavation support and vault arch for tunnelling stabilisation are presented. Parameters for the numerical analysis of soil-cement mixture are evaluated and recommended. 展开更多
关键词 GROUTING soil-cement mixture Mechanical properties Deep soil mixed wall (DSMW) Vault arch
下载PDF
Experimental Study on Cemented Soil in Sulfate Radical Corrosive solution
19
作者 HAN Pengju 《Journal of Civil Engineering and Architecture》 2023年第8期390-394,共5页
The cemented soil is a widely used method to stabilize the weak soil.It would be working in polluted environment,and be influenced by environmental pollution such as acid rain,seawater invasion or industrial pollution... The cemented soil is a widely used method to stabilize the weak soil.It would be working in polluted environment,and be influenced by environmental pollution such as acid rain,seawater invasion or industrial pollution,which may lead to deterioration of the structure.In order to simulate and study the erosion effect process including as the changes of corrosive degree of surface,compression strength of cemented soil samples and SO_(4)^(2-)concentration of corrosive solutions,a series of tests are conducted on the cemented soil blocks cured in different concentrations of MgSO_(4),H_(2)SO_(4)and Na_(2)SO_(4)solutions.The test results show that the corrosive degree of the sample surface increases while the compression strength decreases with the increase of the corrosive solution concentration at the same erosion time,and that the corrosive degree increases with the corrosive time.The influence of inorganic compound solutions on the cemented soil follows the order of Na_(2)SO_(4)>MgSO_(4)>H_(2)SO_(4).By analyzing the mechanism,the corrosive type of H_(2)SO_(4)and MgSO_(4)solutions to cemented soil is a composite type of resolving and crystallizing combination,and Na_(2)SO_(4)solution to cemented soil is a composite type of dissolving and crystallizing combination. 展开更多
关键词 cemented soil compressive strength CORROSION SULFATE
下载PDF
Calcium carbonate promotes the formation and stability of soil macroaggregates in mining areas of China
20
作者 Junyu Xie Jianyong Gao +7 位作者 Hanbing Cao Jiahui Li Xiang Wang Jie Zhang Huisheng Meng Jianping Hong Tingliang Li Minggang Xu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期1034-1047,共14页
We studied changes in the concentrations of aggregate-cementing agents after different reclamation times and with different fertilization regimes,as well as the formation mechanism of aggregates in reclaimed soil,to p... We studied changes in the concentrations of aggregate-cementing agents after different reclamation times and with different fertilization regimes,as well as the formation mechanism of aggregates in reclaimed soil,to provide a theoretical basis for rapid reclamation of soil fertility in the subsidence area of coal mines in Shanxi Province,China.In this study,soil samples of 0–20 cm depth were collected from four fertilization treatments of a longterm experiment started in 2008:no fertilizer (CK),inorganic fertilizer (NPK),chicken manure compost (M),and50%inorganic fertilizer plus 50%chicken manure compost (MNPK).The concentrations of cementing agents and changes in soil aggregate size distribution and stability were analysed.The results showed that the formation of>2 mm aggregates,the aggregate mean weight diameter (MWD),and the proportion of>0.25 mm water-stable aggregates (WR_(0.25)) increased significantly after 6 and 11 years of reclamation.The concentration of organic cementing agents tended to increase with reclamation time,whereas free iron oxide (Fed) and free aluminium oxide(Ald) concentrations initially increased but then decreased.In general,the MNPK treatment signi?cantly increased the concentrations of organic cementing agents and CaCO_(3),and CaCO_(3) increased by 60.4%at 11 years after reclamation.Additionally,CaCO_(3) had the greatest effect on the stability of aggregates,promoting the formation of>0.25 mm aggregates and accounting for 54.4%of the variance in the proportion and stability of the aggregates.It was concluded that long-term reclamation is bene?cial for improving soil structure.The MNPK treatment was the most effective measure for increasing maize grain yield and concentration of organic cementing agents and CaCO_(3). 展开更多
关键词 reclamation time manure combined with inorganic fertilizer soil aggregate stability cementing agents CaCO_(3)
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部