期刊文献+
共找到1,439篇文章
< 1 2 72 >
每页显示 20 50 100
Fracture sealing performance of granular lost circulation materials at elevated temperature:A theoretical and coupled CFD-DEM simulation study
1
作者 Chong Lin Qi-Cong Xu +4 位作者 Lie-Xiang Han Gao Li Hai He Hong-Ling Zhou Ji-Ping She 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期567-581,共15页
Lost circulation is a common downhole problem of drilling in geothermal and high-temperature,high-pressure(HTHP)formations.Lost circulation material(LCM)is a regular preventive and remedial measure for lost circulatio... Lost circulation is a common downhole problem of drilling in geothermal and high-temperature,high-pressure(HTHP)formations.Lost circulation material(LCM)is a regular preventive and remedial measure for lost circulation.However,conventional LCMs seem ineffective in high-temperature formations.This may be due to the changes in the mechanical properties of LCMs and their sealing performance under high-temperature conditions.To understand how high temperature affects the fracture sealing performance of LCMs,we developed a coupled computational fluid dynamics-discrete element method(CFD-DEM)model to simulate the behavior of granular LCMs in fractures.We summarized the literature on the effects of high temperature on the mechanical properties of LCMs and the rheological properties of drilling fluid.We conducted sensitivity analyses to investigate how changing LCM slurry properties affected the fracture sealing efficiency at increasing temperatures.The results show that high temperature reduces the size,strength,and friction coefficient of LCMs as well as the drilling fluid viscosity.Smaller,softer,and less frictional LCM particles have lower bridging probability and slower bridging initiation.Smaller particles tend to form dual-particle bridges rather than single-particle bridges.These result in a deeper,tighter,but unstable sealing zone.Reduced drilling fluid viscosity leads to faster and shallower sealing zones. 展开更多
关键词 Geothermal well drilling HTHP formationLost circulation material CFD-DEM Fracture sealing
下载PDF
Effects of Surface-activated Coal Gangue Aggregates on Properties of Cement-based Materials 被引量:8
2
作者 YANG Quanbing Lü Miaoxiong LUO Yongbing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第6期1118-1121,共4页
Effects of calcined coal gangue (CG) aggregates treated by the surface thermal activation on the flowability and strength, and paste-CG aggregate interfaces of the cement-based material were investigated. The experi... Effects of calcined coal gangue (CG) aggregates treated by the surface thermal activation on the flowability and strength, and paste-CG aggregate interfaces of the cement-based material were investigated. The experimental results show that the compressive and flexural strength of the cement-based material with the calcined CG aggregates is much higher than that of the material with the natural CG aggregates, but the flowability of the material with calcined CG is significantly reduced with the calcined time. The strength of the material with the calcined CG aggregates only increases little with the calcined time at the same w/c ratio, but is reduced with the calcined time at the same flowability. The CG aggregates calcined by the surface thermal activation obviously overcomes the disadvantages of fully calcined CG. 展开更多
关键词 coal gangue AGGREGATE cement-based material STRENGTH FLOWABILITY
下载PDF
Emerging and Innovative Materials for Hydropower Engineering Applications:Turbines,Bearings,Sealing,Dams and Waterways,and Ocean Power 被引量:6
3
作者 Emanuele Quaranta Peter Davies 《Engineering》 SCIE EI 2022年第1期148-158,共11页
The hydropower sector is currently experiencing several technological developments.New technologies and practices are emerging to make hydropower more flexible and more sustainable.Novel materials have also been recen... The hydropower sector is currently experiencing several technological developments.New technologies and practices are emerging to make hydropower more flexible and more sustainable.Novel materials have also been recently developed to increase performance,durability,and reliability;however,no systematic discussions can be found in the literature.Therefore,in this paper,novel materials for hydropower applications are presented,and their performance,advantages,and limitations are discussed.For example,composites can reduce the weight of steel equipment by 50%to 80%,polymers and superhydrophobic materials can reduce head losses by 4%to 20%,and novel bearing materials can reduce bearing wear by 6%.These improvements determine higher efficiencies,longer life span,waste reduction,and maintenance needs,although the initial cost of some materials is not yet competitive with respect to the costs of traditional materials.The novel materials are described here based on the following categories:novel materials for turbines,dams and waterways,bearings,seals,and ocean hydropower. 展开更多
关键词 Bearing Composite DAM HYDROPOWER material Ocean seal Turbine
下载PDF
Self-healing Action of Permeable Crystalline Coating on Pores and Cracks in Cement-based Materials 被引量:4
4
作者 王桂明 余剑英 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2005年第1期89-91,97,共4页
The self-healing action of a permeable crystalline coating on the po rous mortar was investigated by two times impermeability test. Moreover, the sel f-healing mechanism of cement-based materials with the permeable cr... The self-healing action of a permeable crystalline coating on the po rous mortar was investigated by two times impermeability test. Moreover, the sel f-healing mechanism of cement-based materials with the permeable crystalline c oating was studied by SEM. The results indicate that the permeable crystalline c oating not only seals the pores and cracks in mortar during its curing process, but also heals the permeable pathway caused by first impermeability test or crac ks produced by freeze-thaw cycles. Therefore, cement-based materials can be im proved by the permeable crystalline coating for the self-healing function. SEM images prove that the self-healing function is realized by generating a great q uantity of non-soluble dendritic crystalline within the pores and cracks, which prevents the penetration of water and other liquids. 展开更多
关键词 cement-based materials SELF-HEALING IMPERMEABILITY CRYSTALLINE
下载PDF
Effects of the Component and Fiber Gradient Distributions on the Strength of Cement-based Composite Materials 被引量:8
5
作者 杨久俊 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2003年第2期61-64,共4页
The effects of the component gradient distribution at interface and the fiber gradient distribution on the strength of cement-based materials were studied. The results show that the flexural strength and compressive s... The effects of the component gradient distribution at interface and the fiber gradient distribution on the strength of cement-based materials were studied. The results show that the flexural strength and compressive strength of the mortar and concrete with interface component and fiber gradient distributions are obviously improved. The strengthes of the fiber gradient distributed mortar and concrete (FGDM/C) are higher than those of fiber homogeneously distributed mortar and concrete (FHDM/C). To obtain the same strength, therefore, a smaller fiber volume content in FGDM/C is needed than that in FHDM/C. The results also show that the component gradient distribution of the concrete can be obtained by means of multi-layer vibrating formation. 展开更多
关键词 component gradient distribution fiber gradient distribution cement-based functional materials
下载PDF
Influence of Water Content on Conductivity and Piezoresistivity of Cement-based Material with both Carbon Fiber and Carbon Black 被引量:4
6
作者 韩宝国 欧进萍 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第1期147-151,共5页
The influence of water content on the conductivity and piezoresistivity of cement-based material with carbon fiber (CF) and carbon black (CB) was investigated. The piezoresistivity of cement-based material with bo... The influence of water content on the conductivity and piezoresistivity of cement-based material with carbon fiber (CF) and carbon black (CB) was investigated. The piezoresistivity of cement-based material with both CF and CB was compared with that of cement-based material with CF only, and the changes in electrical resistivity of cement-based material with both CF and CB under static and loading conditions in different drying and soaking time were studied. It is found that the piezoresistivity of cement-based material with both CF and CB has better repeatability and linearity than that of cement-based material with CF only. The conductivity and the sensitivity of piezoresistive cement-based material with both CF and CB are enhanced as the water content in piezoresistive cement-based material increases. 展开更多
关键词 cement-based material carbon fiber carbon black water content CONDUCTIVITY PIEZORESISTIVITY
下载PDF
Effects of Specimen Shape and Size on Water Loss and Drying Shrinkage of Cement-based Materials 被引量:4
7
作者 巴明芳 钱春香 WANG Hui 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第4期733-740,共8页
The effects of specimen size and shape on development of water loss and shrinkage of mortar and concrete respectively were investigated. The experimental results showed that the effects of specimen size and shape on w... The effects of specimen size and shape on development of water loss and shrinkage of mortar and concrete respectively were investigated. The experimental results showed that the effects of specimen size and shape on water loss ratio were consistent with those on drying shrinkage strain. It is also indicated that drying shrinkage strain has obvious linear correlation with water loss ratios independent of specimen size and shape. The effects of specimen size and shape on the water loss ratio were embodied in established model of averaged relative humidity improved by considering effects of sequential hydration and calculated by finite difference method. Furthermore, the effects of specimen size and shape on drying shrinkage strain of concrete were experimentally deduced and applied to modify criterion EB-FIP1990. The comparison between experimental and calculated results shows that the modified EB-FIP1990 can be adopted to predict drying shrinkage strain of concrete with reasonable accuracy. 展开更多
关键词 cement-based materials drying shrinkage water loss effective drying thickness
下载PDF
Effects of an AMPS-Modified Polyacrylic Acid Superplasticizer on the Performance of Cement-based Materials 被引量:3
8
作者 陈宝璠 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第1期109-116,共8页
A self-made AMPS-modified polyacrylic acid superplasticizer and two others of the same type but with different molecular structures, which are commercially available, are used in this study to investigate the effect o... A self-made AMPS-modified polyacrylic acid superplasticizer and two others of the same type but with different molecular structures, which are commercially available, are used in this study to investigate the effect of a 2-acrylamide-2-methyl propylene sulfonic (AMPS)-modified polyacrylic acid superplasticizer on the properties of cement-based materials. In the experiments, initial fluidity, 1 and 2 h fluidity over time after admixtion, bleeding rate of the net cement mortar, and adsorption capacity and rate of cement particles are determined by adding different dosages of the three superplasticizers into the cement paste to characterize the dispersivity and the dispersion retention capability of each superplasticizer. Water-reducing rates of three kinds of mortars are simultaneously determined to characterize the water-reducing capacity of each superplasticizer, as well as the 3 and 28 d compressive strengths to characterize the compression resistance. Results show that water-reducing effect and fluidity better maintain the capability of the AMPS-modified polyacrylic acid superplasticizer than the two commercially available polyacrylic acid superplasticizers, and the compressive strengths after 3 and 28 d show significant growth. In conclusion, the effects of water reduction and strengthening of the AMPS-modified polyacrylic acid superplasticizer are evidently better than those of the two commercially available polyacrylic acid superplasticizers. 展开更多
关键词 AMPS-modified polyacrylic acid superplasticizer cement-based materials polyacrylic acid superplasticizer PERFORMANCE
下载PDF
Microscopic properties and sealing performance of new gas drainage drilling sealing material 被引量:5
9
作者 Zhai Cheng Yu Xu +2 位作者 Ni Guanhua Li Min Hao Zhiyong 《International Journal of Mining Science and Technology》 SCIE EI 2013年第4期474-479,共6页
The geological condition of Chinese coal mines are complex and high gassy,which account for ffty percent to seventy percent.Because of the abundant pores and cracks around the drainage drilling hole,the gas concentrat... The geological condition of Chinese coal mines are complex and high gassy,which account for ffty percent to seventy percent.Because of the abundant pores and cracks around the drainage drilling hole,the gas concentration attenuates rapidly,and the effective gas drainage period is short.The traditional sealing materials of yellow mud and cement-sand grout will readily shrink after the drilling hole is sealed,the sealing length is short and the sealing quality is not satisfactory.Currently widely used polyurethane material will shrink when it comes into contact with water,and the price is also very high.In this study,taking cement as a base material,a novel composite sealing material mixed by expansion admixture,additive,and fbrin and coupling agent was developed and the sealing performance and expansion property of the material were also studied and analyzed.The FEI Quanta TM 250 environmental scanning electron microscope was used to investigate the microstructure of material.The results revealed that the new composite sealing material had a desirable expansion performance and a defnite fluidity convenient for grouting.The solidifed material,combining closely with the drilling wall,possessed an adequate strength and was not easy to shrink.Compared to the conventional polyurethane,the gas drainage concentration by drilling sealing exceeded 40 percent,and the sealing capacity improves5 times,the sealing effect increases signifcantly. 展开更多
关键词 Drilling sealing material Microcosmic structure Gas drainage sealing performance
下载PDF
Hydration mechanism of low quality fly ash in cement-based materials 被引量:10
10
作者 刘数华 孔亚宁 王露 《Journal of Central South University》 SCIE EI CAS 2014年第11期4360-4367,共8页
The hydration mechanism of low quality fly ash in cement-based materials was investigated. The hydration heat of the composite cementitious materials was determined by isothermal calorimetry, and the hydration product... The hydration mechanism of low quality fly ash in cement-based materials was investigated. The hydration heat of the composite cementitious materials was determined by isothermal calorimetry, and the hydration products, quantity, pore structure and morphology were measured by X-ray diffraction(XRD), thermalgravity-differential thermal analysis(TG-DTA), mercury intrusion porosimetry(MIP) and scanning electron microscopy(SEM), respectively. The results indicate that grinding could not only improve the physical properties of the low quality fly ash on particle effect, but also improve hydration properties of the cementitious system from various aspects compared with raw low quality fly ash(RLFA). At the early stage of hydration, the low quanlity fly ash acts as almost inert material; but then at the later stage, high chemical activity, especially for ground low quality fly ash(GLFA), could be observed. It can accelerate the formation of hydration products containing more chemical bonded water, resulting in higher degree of cement hydration, thus denser microstructure and more reasonable pore size distribution, but the hydration heat in total is reduced. It can also delay the induction period, but the accelerating period is shortened and there is little influence on the second exothermic peak. 展开更多
关键词 low quality fly ash cement-based materials hydration products pore structure
下载PDF
Cavitation and electrochemical characteristics of thermal spray coating with sealing material 被引量:2
11
作者 Seong-Jong KIM Seung-Jun LEE +3 位作者 In-Ju KIM Seong-Kweon KIM Min-Su HAN Seok-Ki JANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期1002-1010,共9页
Steel applied in ocean environment is exposed to corrosion and cavitation and is subject to increasing damages. To prevent this, anti-corrosion thermal spray coating technique is widely used. The low-temperature therm... Steel applied in ocean environment is exposed to corrosion and cavitation and is subject to increasing damages. To prevent this, anti-corrosion thermal spray coating technique is widely used. The low-temperature thermal spray coating was performed with 85%Al-14.5%Zn-0.5%Zr for ship materials and various sealing materials were applied to improve its durability, and the electrochemical behavior and cavitation characteristics were observed. The results show that the sealing improves all the properties of the materials. Hybrid ceramic and fluoro-silicon sealing materials show good electrochemical characteristics, and the fluoro-silieon sealing material shows the best anti-cavitation characteristics. 展开更多
关键词 thermal spray coating sealing material CAVITATION electrochemical characteristics
下载PDF
Long-term Durability of Cement-based Materials with Very Low w/b 被引量:1
12
作者 谢友均 龙广成 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第3期303-308,共6页
To investigate the durability, especially the long-term stability of cement-based materials with very low w/b, the air permeability test, carbonation test, capillary absorption rate test and dilation potential test we... To investigate the durability, especially the long-term stability of cement-based materials with very low w/b, the air permeability test, carbonation test, capillary absorption rate test and dilation potential test were adopted under long-term heat treatment condition. Microstructure of these materials is also analyzed by scanning electronic microscopy (SEM) and mercury intrusion porosimeter (MIP) in order to further unveil its mechanism and interrelation between microstructure and its properties. The results indicate that in the area investigated, cement-based material with w/b 0.17, like RPC, possesses low porosity and excellent durability. Moreover, its porosity will further decrease under long-term heat treatment compared with normal heat treatment. Its long-term durability is much superior to that of other cement-based materials with w/b 0.25 or 0.35 as high strength concrete(HSC). 展开更多
关键词 cement-based material DURABILITY dilatability potential air permeability CARBONATION capillary absorption
下载PDF
Real-time in situ visualization of internal relative humidity in fluorescence embedded cement-based materials 被引量:1
13
作者 GU Hai-tao YANG Zheng-hong +1 位作者 FAN Zhen JIANG Wei 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第12期3790-3799,共10页
The transmission and distribution of moisture in cement-based materials are of great significance to the properties and durability of materials. Traditional macro-humidity monitoring equipment in civil engineering can... The transmission and distribution of moisture in cement-based materials are of great significance to the properties and durability of materials. Traditional macro-humidity monitoring equipment in civil engineering cannot capture the microscale humidity inside cement-based materials in situ. In this paper, a method of using rhodamine 6G fluorescence to characterize the change in relative humidity in cement-based materials is proposed. Two kinds of moulding processes are designed, which are premixed and smeared after moulding, and the optimal preparation concentration is explored. The results showed that rhodamine 6G can reflect the relative humidity of cement-based materials in situ by its fluorescence intensity and had little effect on the hydration heat release and hydration products of cement-based materials;the fluorescence intensity was much higher when the internal relative humidity was 63% and 75%. The research results lead the application of polymer materials in the field of traditional building materials, help to explore the performance evolution law of cement-based materials in micro scale, and have important significance for the evolution from single discipline to interdisciplinary. 展开更多
关键词 biological fluorescence rhodamine dyes cement-based material relative humidity sensor
下载PDF
Properties of Bamboo Charcoal and Cement-based Composite Materials and Their Microstructure 被引量:1
14
作者 王中平 LI Haoxin +1 位作者 蒋正武 CHEN Qing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第6期1374-1378,共5页
The objective of this work was to study the properties of bamboo charcoal and cement-based composite materials and their microstructure. The pastes with various bamboo charcoals were prepared and the relative properti... The objective of this work was to study the properties of bamboo charcoal and cement-based composite materials and their microstructure. The pastes with various bamboo charcoals were prepared and the relative properties such as setting times and strength were tested and the microstructures and pore characteristics of pastes with various bamboos were also studied. The experimental results indicated that bamboo charcoal affects the setting times of cement paste, but the introduction of water reducer relieves this condition. Bamboo charcoal also poses an impact on the hardened paste strength. The prominent strength decrease is found when more and larger size bamboo charcoal is mixed into the cement paste. Bamboo charcoal alters the paste microstructure and increases the porosity and pore volume, but it increases the pores with the diameter of less than 50 μm. The pastes with various bamboo charcoals are given with the good functions such as adjusting humidity and adsorption. 展开更多
关键词 bamboo charcoal cement-based materials setting time compressive strength porestructure
下载PDF
Effect of Fly Ash on TSA Resistance of Cement-based Material 被引量:3
15
作者 张风臣 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第3期561-566,共6页
Thaumasite form of sulfate attack(TSA)is a major concern in evaluating durability of concrete structures subjected to sulfate and carbonate ions.By means of Fourier transform infrared spectroscopy (FT-IR),X-ray di... Thaumasite form of sulfate attack(TSA)is a major concern in evaluating durability of concrete structures subjected to sulfate and carbonate ions.By means of Fourier transform infrared spectroscopy (FT-IR),X-ray diffraction(XRD),scanning electron microscopy(SEM),and energy dispersive spectrum(EDS) as well as Raman spectra of erosion substances,effect of fly ash on TSA resistance of Portland cement-based material were investigated.Immersed in magnesium sulfate solution with 33 800 ppm mass concentration of SO 4 2-at 5±2℃for 15 weeks,ratio of compressive strength loss decreased as binder replacement ratio of fly ash increased.Furthermore,when binder replacement of fly ash was 60%,compressive strength increased.When thaumasite came into being in samples with 0,15%binder replacement ratio of fly ash,ettringite and gypsum appeared in those with 30%,45%,60%binder replacement ratio of fly ash.Results mentioned above showed that fly ash can restrain formation of thaumasite and improve TSA resistance of Portland cement-based material sufficiently. 展开更多
关键词 fly ash cement-based material thaumasite
下载PDF
Analytical Methods for Prediction of Water Absorption in Cement-Based Material 被引量:1
16
作者 王立成 《China Ocean Engineering》 SCIE EI 2009年第4期719-728,共10页
The capillary absorption of water by unsaturated cement-based material is the main reason of degradation of the structures subjected to an aggressive environment since water often acts as the transporting medium for d... The capillary absorption of water by unsaturated cement-based material is the main reason of degradation of the structures subjected to an aggressive environment since water often acts as the transporting medium for damaging contaminants. It is well known that the capillarity coefficient and sorptivity are two important parameters to characterize the water absorption of porous materials. Generally, the former is used to describe the penetration depth or height of water transport, which must be measured by special and advanced equipment. In contrast, the sorptivity represents the relationship between cumulative volume of water uptake and the squareroot of the elapsed time, which can be easily measured by the gravimetric method in a normal laboratory condition. In the present study, an analytical method is developed to build up a bridge between these two parameters, with the purpose that the sorptivity or the gravimetric method can be used to predict the penetration depth of water absorption. Additionally, a new model to explain the dependence of sorptivity on initial water content of the material is developed in order to fit the in situ condition. The comparison of predicted results by the analytical method with experimental data or numerical calculation results, as well as some previous models, validates the feasibility of the methods presented in this paper. 展开更多
关键词 water absorption capillarity coefficient SORPTIVITY cement-based material initial water content
下载PDF
M-T Scheme for Predicting Effective Diffusion Coefficient of Chloride Ions in Cement-based Materials 被引量:1
17
作者 SUN Guowen ZHANG Jianjian +4 位作者 ZHANG Lijuan CAO Tongning WANG Penshuo ZHANG Ying YAN Na 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第3期520-527,共8页
To investigate the transport characteristics of chloride ions in cement-based materials, the Mori-Tanaka (M-T) prediction scheme of the effective diffusion coefficient in composites containing single-phase and multi-p... To investigate the transport characteristics of chloride ions in cement-based materials, the Mori-Tanaka (M-T) prediction scheme of the effective diffusion coefficient in composites containing single-phase and multi-phase inclusions is systematically deduced based on the theory of composite mechanics and porous medium. The volume fraction, morphology and distribution of aggregates, as well as the interfacial transition zone (ITZ) are fully taken into consideration in this proposed model. The results show that the algorithm of M-T prediction scheme with high accuracy is relatively simple. 展开更多
关键词 M-T scheme chloride ion effective diffusion coefficient cement-based materials ITZ
下载PDF
Influence of Silica Fume on the Reflectivity and Transmission Efficiency of Cement-Based Materials 被引量:2
18
作者 Xiuzhi Zhang Guodong Zhang +1 位作者 Yu Zhang Zonghui Zhou 《Journal of Applied Mathematics and Physics》 2014年第9期843-847,共5页
As a kind of mineral admixture, silica fume has low permittivity, which will affect the electromagnetic properties of cement-based materials. To study the effect of silica fume on the properties of cement-based materi... As a kind of mineral admixture, silica fume has low permittivity, which will affect the electromagnetic properties of cement-based materials. To study the effect of silica fume on the properties of cement-based materials, the reflectivity, transmission efficiency and pore structure were analyzed by using the vector network analyzer and mercury injection apparatus. Results show that silica fume can make the mortar more compact and the porosity of sample with 9% silica fume is only 17.8%, which is far lower than the control sample;With the increase of the silica fume content, the peak of reflectivity curve increases from -23.2 dB to -16.0 dB, and then decreases from -16.04 dB to -28.7 dB in the frequency range of 6 – 18 GHz. Reflectivity of sample with 3% content of silica fume is lower than other samples within 26.5 - 40 GHz;Transmission efficiency of samples shows the trend of increase with silica fume content increases from 0% to 6% within 8.2 - 12.4 GHz, 12 - 18 GHz and 26.5 - 40 GHz, but when the content increases from 6% to 9%, the transmission efficiency of samples reduces. 展开更多
关键词 SILICA Fume cement-based materialS REFLECTIVITY TRANSMISSION EFFICIENCY
下载PDF
Effect of Glutinous Rice Flour on Mechanical Properties and Microstructure of Cement-based Materials 被引量:1
19
作者 FENG Qi LU Bao WANG Dan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第2期394-400,共7页
The mechanism of glutinous rice flour,a kind of natural admixture,on the hydration process,setting time,and microstructure of the Portland cement was investigated.The experimental results show that the glutinous rice ... The mechanism of glutinous rice flour,a kind of natural admixture,on the hydration process,setting time,and microstructure of the Portland cement was investigated.The experimental results show that the glutinous rice flour has an obvious setting retarding effect on cement pastes.The optimal dosage of the glutinous rice flour is 3wt%.In this case,the initial and final setting time of the paste are delayed by 140 and185 min,respectively.The flexural and compressive strengths of the hardened paste are increased by 0.35%and 0.07%after 56 d of curing.The glutinous rice flour hinders the mineral dissolution process and decreases the concentration of calcium ion at the initial stage of hydration due to the complexation effect,thereby hindering the nucleation and growth of CH and C-S-H phases and prolonging the hydration process.However,C-S-H phases combine with the glutinous rice flour to contribute the bonding effect together,which compacts the microstructure of hardened cement pastes at the later hydration stage of cement pastes.Thus,in-depth investigation on the utilization of glutinous rice flour as the admixture for the Portland cement is expected to be meaningful for the control of hydration exothermic rate and setting time. 展开更多
关键词 glutinous rice flour cement-based materials mechanical properties setting time
下载PDF
Form and Mechanism of Sulfate Attack on Cement-based Material Made of Limestone Powder at Low Water-binder Ratio under Low Temperature Conditions 被引量:1
20
作者 刘娟红 徐卫国 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第3期581-585,共5页
The development of strength and the form of attack of cement-based material made of limestone powder at low water-binder ratio under low-temperature sulfate environment were studied. The results indicate that when wat... The development of strength and the form of attack of cement-based material made of limestone powder at low water-binder ratio under low-temperature sulfate environment were studied. The results indicate that when water-binder ratio is lower than 0.40, the cement-based material with limestone powder has insignificant change in appearance after being soaked in 10% magnesium sulfate solution at low temperature for 120 d, and has significant change in appearance after being soaked at the age of 200 d. Expansion damage and exfoliation occur on the surface of concrete test cube at different levels. When limestone powder accounts for about 28 percent of cementitious material, with the decrease of water-binder ratio, the compressive strength loss has gradually decreased after the material is soaked in the magnesium sulfate solution at low temperature at the age of 200 d. After the specimen with the water-binder ratio of less than 0.4 and the limestone powder volume of greater than 20% is soaked in 10% magnesium sulfate solution at low temperature at the age of 200 d, gypsum attack-led destruction is caused to the concrete test cube, without thaumasite sulfate attack. 展开更多
关键词 low water-binder ratio limestone powder cement-based material low-temperature sulfate attack concrete
下载PDF
上一页 1 2 72 下一页 到第
使用帮助 返回顶部