Previously,the once-through CO_(2)chemical absorption process by biogas slurry was experimentally verified to offer the unique advantages like low energy consumption,cost-effectiveness,and feasibility of CO_(2)fixatio...Previously,the once-through CO_(2)chemical absorption process by biogas slurry was experimentally verified to offer the unique advantages like low energy consumption,cost-effectiveness,and feasibility of CO_(2)fixation in plants.However,this technology also faces some challenges and limitations,including a low CO_(2)absorption rate and performance.To improve the effectiveness and reliability of this innovative carbon capture,utilization,and storage(CCUS)technology,this study proposes a novel method to enhance the CO_(2)absorption performance without affecting agricultural applications of CO_(2)by mixing biogas slurry with biomass ash as the green CO_(2)absorbent.The results indicate that when the solid-liquid mass ratio of biomass ash to biogas slurry is 5:10,the CO_(2)loading of the biomass ash and biogas slurry mixture(BA-BS)reaches 936.7±59.1 mmol/kg.Furthermore,the pH of the BA-BS remains stable at 6.9,meeting the rhizosphere pH requirements for plant cultivation.The CO_(2)absorption of the BA-BS liquid phase,referred to as improved biogas slurry(IBS),reaches its maximum at 230.4±3.5 mmol/L,which is 126.8%higher than that of the unimproved biogas slurry.The nitrogen content in the BA-BS solid phase,calling improved biomass ash(IBA),also reaches its maximum at 4.24±0.74 mg/g,thereby expanding the agricultural utilization of biomass ash.The most reasonable and effective way of utilizing CO_(2)-rich mixed biogas slurry and biomass ash involves use IBA as the base fertilizer for tomato cultivation,supplemented later with IBS to promote growth.This optimal application allows for substantial utilization of CO_(2),introduced into the tomato cultivation environment by IBA and IBS.The carbon fixation of a single tomato has improved by 108.2%.This study thus provides a feasible solution for high-value negative carbonization of biogas slurry and biomass ash.展开更多
Several typical ash samples from a 0.25 MW test furnace fired black liquor coal slurry were selected for investigation. The phases and compounds containing sodium in ash samples were acquired from X-ray diffraction an...Several typical ash samples from a 0.25 MW test furnace fired black liquor coal slurry were selected for investigation. The phases and compounds containing sodium in ash samples were acquired from X-ray diffraction analyses. As well, detailed analyses of the amounts of major mineral elements along thickness gradients of representative ash samples were carried out. The elements, including Na, Si, A1, S and C1 were analyzed by the advanced electron probe microanalyzer equipment, which provid evidence and interpretation for the analytical results of XRD. The findings indicate that the occurrence form of sodium has experi- enced important changes during the combustion of black liquor coal slurry, which translated into nepheline, thenardite, sodium sulfate, sodium chloride, sodium silicoaluminate, hanyne and other phases containing sodium, from NaOH, Na2CO3 and Na2S in raw fuel. Of all the sodium compounds, nepheline, thenardite and sodium sulfate are the most important forms of Na in solid com- bustion residues. Such a transformation of Na during the combustion of black liquor coal slurry resulted in a considerable impact on ash deposition and is not only different from the raw coal and papermaldng black liquors, but is also affected by local circum- stances in the combustion furnace. Amounts of Na, S and C1 in ash deposits from low temperature zones were larger than those from high temperature zones. Our findings should provide important theoretical instructions for industrial applications of black liquor coal slurry.展开更多
基金funded by the National Natural Science Foundation of China(Nos.52076101,32360335)the Knowledge Innovation Program of Wuhan-Basic Research(No.2023020201010108)+3 种基金the Fundamental Research Funds for the Central Universities(No.2662023GXPY001)the High-level Talents Scientific Research Start-up Fund Project of Yulin University(No.2023GK47)the“New Star of Science and Technology”Talent Program of Yulin(No.CXY-2022-137)the Young Talent Fund of Association for Science and Technology in Yulin(No.20230514)。
文摘Previously,the once-through CO_(2)chemical absorption process by biogas slurry was experimentally verified to offer the unique advantages like low energy consumption,cost-effectiveness,and feasibility of CO_(2)fixation in plants.However,this technology also faces some challenges and limitations,including a low CO_(2)absorption rate and performance.To improve the effectiveness and reliability of this innovative carbon capture,utilization,and storage(CCUS)technology,this study proposes a novel method to enhance the CO_(2)absorption performance without affecting agricultural applications of CO_(2)by mixing biogas slurry with biomass ash as the green CO_(2)absorbent.The results indicate that when the solid-liquid mass ratio of biomass ash to biogas slurry is 5:10,the CO_(2)loading of the biomass ash and biogas slurry mixture(BA-BS)reaches 936.7±59.1 mmol/kg.Furthermore,the pH of the BA-BS remains stable at 6.9,meeting the rhizosphere pH requirements for plant cultivation.The CO_(2)absorption of the BA-BS liquid phase,referred to as improved biogas slurry(IBS),reaches its maximum at 230.4±3.5 mmol/L,which is 126.8%higher than that of the unimproved biogas slurry.The nitrogen content in the BA-BS solid phase,calling improved biomass ash(IBA),also reaches its maximum at 4.24±0.74 mg/g,thereby expanding the agricultural utilization of biomass ash.The most reasonable and effective way of utilizing CO_(2)-rich mixed biogas slurry and biomass ash involves use IBA as the base fertilizer for tomato cultivation,supplemented later with IBS to promote growth.This optimal application allows for substantial utilization of CO_(2),introduced into the tomato cultivation environment by IBA and IBS.The carbon fixation of a single tomato has improved by 108.2%.This study thus provides a feasible solution for high-value negative carbonization of biogas slurry and biomass ash.
基金Projects 2004CB217701 supported by the National Basic Research Program of China 2005-1 by the Scientific Research Foundation of the Ministry ofEducation of Hebei Province
文摘Several typical ash samples from a 0.25 MW test furnace fired black liquor coal slurry were selected for investigation. The phases and compounds containing sodium in ash samples were acquired from X-ray diffraction analyses. As well, detailed analyses of the amounts of major mineral elements along thickness gradients of representative ash samples were carried out. The elements, including Na, Si, A1, S and C1 were analyzed by the advanced electron probe microanalyzer equipment, which provid evidence and interpretation for the analytical results of XRD. The findings indicate that the occurrence form of sodium has experi- enced important changes during the combustion of black liquor coal slurry, which translated into nepheline, thenardite, sodium sulfate, sodium chloride, sodium silicoaluminate, hanyne and other phases containing sodium, from NaOH, Na2CO3 and Na2S in raw fuel. Of all the sodium compounds, nepheline, thenardite and sodium sulfate are the most important forms of Na in solid com- bustion residues. Such a transformation of Na during the combustion of black liquor coal slurry resulted in a considerable impact on ash deposition and is not only different from the raw coal and papermaldng black liquors, but is also affected by local circum- stances in the combustion furnace. Amounts of Na, S and C1 in ash deposits from low temperature zones were larger than those from high temperature zones. Our findings should provide important theoretical instructions for industrial applications of black liquor coal slurry.