The clay–sand barriers in Minqin desert area,China,represent a pioneering windbreak and sand fixation project with a venerable history of 60 a.However,studies on evaluating the long-term effectiveness of clay–sand b...The clay–sand barriers in Minqin desert area,China,represent a pioneering windbreak and sand fixation project with a venerable history of 60 a.However,studies on evaluating the long-term effectiveness of clay–sand barriers against aeolian erosion,particularly from the perspective of surface sediment grain size,are limited and thus insufficient to ascertain the protective impact of these barriers on regional aeolian activities.This study focused on the surface sediments(topsoil of 0–3 cm depth)of clay–sand barriers in Minqin desert area to explain their erosion resistance from the perspective of surface sediment grain size.In March 2023,six clay–sand barrier sampling plots with clay–sand barriers of different deployment durations(1,5,10,20,40,and 60 a)were selected as experimental plots,and one control sampling plot was set in an adjacent mobile sandy area without sand barriers.Surface sediment samples were collected from the topsoil of each sampling plot in the study area in April 2023 and sediment grain size characteristics were analyzed.Results indicated a predominance of fine and medium sands in the surface sediments of the study area.The deployment of clay–sand barriers cultivated a fine quality in grain size composition of the regional surface sediments,increasing the average contents of very fine sand,silt,and clay by 30.82%,417.38%,and 381.52%,respectively.This trend became markedly pronounced a decade after the deployment of clay–sand barriers.The effectiveness of clay–sand barriers in erosion resistance was manifested through reduced wind velocity,the interception of sand flow,and the promotion of fine surface sediment particles.Coarser particles such as medium,coarse,and very coarse sands predominantly accumulated on the external side of the barriers,while finer particles such as fine and very fine sands concentrated in the upwind(northwest)region of the barriers.By contrast,the contents of finest particles such as silt and clay were higher in the downwind(southeast)region of the sampling plots.For the study area,the deployment of clay–sand barriers remains one of the most cost-effective engineering solutions for aeolian erosion control,with sediment grain size parameters serving as quantitative indicators for the assessment of these barriers in combating desertification.The results of this study provide a theoretical foundation for the construction of windbreak and sand fixation systems and the optimization of artificial sand control projects in arid desert areas.展开更多
Using aeolian sand(AS)for goaf backfilling allows coordination of green mining and AS control.Cemented AS backfill(CASB)exhibits brittle fracture.Polypropylene(PP)fibers are good toughening materials.When the tougheni...Using aeolian sand(AS)for goaf backfilling allows coordination of green mining and AS control.Cemented AS backfill(CASB)exhibits brittle fracture.Polypropylene(PP)fibers are good toughening materials.When the toughening effect of fibers is analyzed,their influence on the slurry conveying performance should also be considered.Additionally,cement affects the interactions among the hydration products,fibers,and aggregates.In this study,the effects of cement content(8wt%,9wt%,and 10wt%)and PP fiber length(6,9,and 12 mm)and dosage(0.05wt%,0.1wt%,0.15wt%,0.2wt%,and 0.25wt%)on fluidity and mechanical properties of the fibertoughened CASB(FCASB)were analyzed.The results indicated that with increases in the three aforementioned factors,the slump flow decreased,while the rheological parameters increased.Uniaxial compressive strength(UCS)increased with the increase of cement content and fiber length,and with an increase in fiber dosage,it first increased and then decreased.The strain increased with the increase of fiber dosage and length.The effect of PP fibers became more pronounced with the increase of cement content.Digital image correlation(DIC)test results showed that the addition of fibers can restrain the peeling of blocks and the expansion of fissure,and reduce the stress concentration of the FCASB.Scanning electron microscopy(SEM)test indicated that the functional mechanisms of fibers mainly involved the interactions of fibers with the hydration products and matrix and the spatial distribution of fibers.On the basis of single-factor analysis,the response surface method(RSM)was used to analyze the effects of the three aforementioned factors and their interaction terms on the UCS.The influence surface of the two-factor interaction terms and the three-dimensional scatter plot of the three-factor coupling were established.In conclusion,the response law of the FCASB properties under the effects of cement and PP fibers were obtained,which provides theoretical and engineering guidance for FCASB filling.展开更多
The use of aeolian sand(AS)as an aggregate to prepare coal mine cemented filling materials can resolve the problems of gangue shortage and excessive AS deposits.Owing to the lack of research on the mechanism of cement...The use of aeolian sand(AS)as an aggregate to prepare coal mine cemented filling materials can resolve the problems of gangue shortage and excessive AS deposits.Owing to the lack of research on the mechanism of cemented AS backfill(CASB),the response surface method(RSM)was adopted in this study to analyze the influence of ordinary Portland cement(PO)content(x_(1)),fly ash(FA)-AS(FA-AS)ratio(x_(2)),and concentration(x_(3))on the mechanical and microscopic properties of the CASB.The hydration characteristics and internal pore structure of the backfill were assessed through thermogravimetric/derivative thermogravimetric analysis,mercury intrusion porosimetry,and scanning electron microscopy.The RSM results show that the influence of each factor and interaction term on the response values is extremely significant(except x_(1)x_(3),which had no obvious effect on the 28 d strength).The uniaxial compressive strength(UCS)increased with the PO content,FA-AS ratio,and concentration.The interaction effects of x_(1)x_(2),x_(1)x_(3),and x_(2)x_(3) on the UCS at 3,7,and 28 d were analyzed.In terms of the influence of interaction items,an improvement in one factor promoted the strengthening effect of another factor.The enhancement mechanism of the curing time,PO content,and FA-AS ratio on the backfill was reflected in the increase in hydration products and pore structure optimization.By contrast,the enhancement mechanism of the concentration was mainly the pore structure optimization.The UCS was positively correlated with weight loss and micropore content but negatively correlated with the total porosity.The R^(2) value of the fitting function of the strength and weight loss,micropore content,and total porosity exceeded 0.9,which improved the characterization of the enhancement mechanism of the UCS based on the thermogravimetric analysis and pore structure.This work obtained that the influence rules and mechanisms of the PO,FA-AS,concentration,and interaction terms on the mechanical properties of the CASB provided a certain theoretical and engineering guidance for CASB filling.展开更多
In order to prepare a new material with long-term stable performance,low cost,easy construction,and ecological environmental protection,the influence of aeolian sand on the compressive and flexural strength as well as...In order to prepare a new material with long-term stable performance,low cost,easy construction,and ecological environmental protection,the influence of aeolian sand on the compressive and flexural strength as well as micro morphology and phase composition of magnesium oxychloride cement(MOC)was studied.The experimental results indicate that,with the increase of content of doping sand,the compressive strength and flexural strength of MOC decrease significantly.However,when the quality ratio of aeolian sand and light burned magnesia powder is 1:8,the performance meets the actual engineering needs.Namely,the compressive strength of MOC is not less than 18 MPa,and flexural strength is not less than 4 MPa.Meanwhile,within 12 months of age,the compressive strength and flexural strength are stable.There is no obvious change in phase composition,and its main phase is still 5·1·8 phase.Microscopic appearance changes from needle-like to gel-like shape.Based on engineering applications,it is found that when the novel sand-fixing material is used in the field for one year,its macroscopic feature is not damaged,compressive strength and flexural strength are also more stable,phase composition negligibly changes,and micro morphology has also been turned into be gellike shape.These further confirm the long-term stability and weather resistance of MOC doping aeolian sand,providing theoretical and technical support for the widely application of MOC in the field of sand fixation in the future.展开更多
The water characteristic curve for aeolian sand in two processes of wetting and drying was obtained by the negative water column technique.The values of fitting parameters were calculated according to Van Genuchten fo...The water characteristic curve for aeolian sand in two processes of wetting and drying was obtained by the negative water column technique.The values of fitting parameters were calculated according to Van Genuchten formula and the parameters that characterized the prosperities of aeolian sand such as the unsaturated infiltration coefficient and specific water capacity were obtained.The results showed that the water characteristic curve for aeolian sand in wetting process had greater hysteresis quality than ...展开更多
The Salawusu Formation of Milanggouwan section in Salawusu River Valley includes 7 layers of paleo-mobile dune sands, and 4 layers of paleo-fixed and semi-fixed dune sands. Their structures have been observed and thei...The Salawusu Formation of Milanggouwan section in Salawusu River Valley includes 7 layers of paleo-mobile dune sands, and 4 layers of paleo-fixed and semi-fixed dune sands. Their structures have been observed and their grain size, surface textural features and several main chemical elements have been analyzed. The results showed that: 1) Some of the aeolian structural characteristics of these dune sands are similar to that of the recent dune sands. 2) They are also similar to the recent dune sands in grain size components, and parameters of Mz,σ, Sk and Kg, as well as in several main chemical components. 3) The scattergrams of Mz-σ and SiO2-Al2O3+TOFE and the probability curves of grain size showed that these paleo-dune sands are different from paleosols and fluvio-lacustrine facies, but are consistency with recent dune sands. 4) Quartz sands have well roundness and surface textural features such as dish-shaped pits, crescent-shaped pits, pockmarked pits, upturned cleavage plates, siliceous precipitates and siliceous crevasses, indicating that they had been carried for a long time by the wind. As the 11 layers of paleo-dune sands possess the aeolian characteristics in structure, grain size, surface textural features and chemical elements, the origin of their formation should be attributed to eolation.展开更多
The Mudui stratigraphic section represents the typical records of sedimentation processes of sand dunes and interdune depressions on the east coast of Hainan Island.Based on high-density sampling and optically stimula...The Mudui stratigraphic section represents the typical records of sedimentation processes of sand dunes and interdune depressions on the east coast of Hainan Island.Based on high-density sampling and optically stimulated luminescence(OSL) dating of the strata of the section,the grain-size composition,grain-size parameters,cumulative distribution probability curve,and grain-size-sensitivity indexes(SC/D) were analyzed.The analyzed results show that the grain-size features of aeolian sand,weakly developed sandy paleosol,two-facies(aeolian and aqueous) deposits,and lagoon deposits are all different.This indicates four evolutionary phases of the sedimentary environment of the east coast of Hainan Island since 38 ka B.P.Phase I:38-22 ka B.P.;phase II:22-17 ka B.P.;phase III:17-10 ka B.P.;phase IV:10 ka B.P.-present.The climate experienced the hot-wet/hot-dry,hot-wet/hot-dry,and warm-wet/hot-wet fluctuations,and the sedimentary environment also underwent lagoon deposition,dune and interdune depression deposition,dune stabilization and soil development,shifting sand deposition,and evolutionary processes.展开更多
A wind tunnel experiment was performed to investigate aeolian grain motions in the transverse direction, which is perpendicular to the incoming flow and parallels the sand bed. The trajectories in the horizontal plane...A wind tunnel experiment was performed to investigate aeolian grain motions in the transverse direction, which is perpendicular to the incoming flow and parallels the sand bed. The trajectories in the horizontal plane were recorded by high-speed camera. Statistical analysis of 630 trajectories shows that both the motion orientation and the time-averaged speed follow Gaussian distributions. An exclusive method was used to analyze the driving mechanism. It was concluded that the three-dimensional turbulent air flow, rather than the spin of grain or grain-bed collisions, controls the transverse motion.展开更多
Aeolian sand sample from Tengger desert, located in the southern part of Inner Mongolia (China) was characterized for major elemental composition and mineralogy by EPMA, XRF and XRD methods. The objective of this rese...Aeolian sand sample from Tengger desert, located in the southern part of Inner Mongolia (China) was characterized for major elemental composition and mineralogy by EPMA, XRF and XRD methods. The objective of this research was to provide data which would be a guide to aid future beneficiation of this sand, especially for the economic exploitation of feldspar and quartz which have a wide range of applications in various industries like plastic, paint, ceramics and glass industries. The elemental analysis of the sample was carried out by X-ray fluorescence spectrometer and chemical analysis while the minerals present were identified by an X-ray diffraction analyzer. The sand was discovered to contain basically SiO2 (82.43%), Al2O3 (7.68%), Na2O + K2O (4.37%) and TiO2 and Fe2O3 as the main impurities. It was also discovered that grinding of the sand is required to enhance the liberation of the minerals and the separation methods recommended are magnetic separation and flotation. It was therefore concluded that aeolian sand is a suitable source of quartz and feldspar for use in the industry.展开更多
The variation of the Asian winter monsoonal strength has seriously affected the climate and environmental conditions in the Asian monsoonal region, and even in marginal islands and the ocean in the East Asian region. ...The variation of the Asian winter monsoonal strength has seriously affected the climate and environmental conditions in the Asian monsoonal region, and even in marginal islands and the ocean in the East Asian region. However, relevant under-standing remains unclear due to the lack of suitable geological materials and effective proxies in the key study areas. Here, we present a grain-size record derived from the palaeo-aeolian sand dune in the southeastern Mu Us Desert, together with other proxies and OSL dating, which reflect a relatively detailed history of the winter monsoon and abrupt environmental events during the past 4.2 ka. Our grain-size standard deviation model indicated that 〉224 μm content can be considered as an indicator of the intensity of Asian winter monsoon, and it shows declined around 4.2–2.1 ka, enhanced but unstable in 2.1–0.9 ka, and obviously stronger since then. In addition, several typical climate events were also documented, forced by the periodic variation of winter monsoonal intensity. These include the cold intervals of 4.2, 2.8, 1.4 ka, and the Little Ice Age (LIA), and relatively warm sub-phases around 3.0, 2.1, 1.8 ka, and the Medieval Warm Period (MWP), which were roughly accordant with the records of the aeolian materials, peat, stalagmites, ice cores, and sea sediments in various latitudes of the Northern Hemisphere. Combined with the previous progresses of the Asian summer monsoon, we prelimi-narily confirmed a millennial-scale anti-correlation of Asian winter and summer monsoons in the Late Holocene epoch. This study suggests that the evolution of the palaeo-aeolian sand dune has the potential for comprehending the history of Asian monsoon across the desert regions of the modern Asian monsoonal margin in northern China.展开更多
The Sahelian region of Mali is one of the areas seriously affected by sandy desertification in the world. Widely distributed aeolian sand lays a material basis for the development of sandy desertification. Aeolian san...The Sahelian region of Mali is one of the areas seriously affected by sandy desertification in the world. Widely distributed aeolian sand lays a material basis for the development of sandy desertification. Aeolian sand in the region is dominated by fine sand, followed by very fine sand. Sand materials contained in various sand dunes are different in grain size to a certain extent and the mineral compositions of dune sand are dominated by stable and extreme stable minerals, with high stability and maturity. Aeolian sand in the region mainly comes from the reactivation of ancient sand dunes, the transportation of recent runing water and the sand supply of dry lakes and arroyos. Since the Pliocene this region has experienced four major evolution periods of aelian sand, namely from the Pliocene to the early Quaternary, last glacial period, the Holocene and present.展开更多
Aeolian sandy soil in mining areas exhibits intense evaporation and poor water retention capacity.This study was designed to find a suitable biochar application method to improve soil water infiltration and minimize s...Aeolian sandy soil in mining areas exhibits intense evaporation and poor water retention capacity.This study was designed to find a suitable biochar application method to improve soil water infiltration and minimize soil water evaporation for aeolian sand soil.Using the indoor soil column method,we studied the effects of three application patterns(A(0-20 cm was a mixed sample of mixed-based biochar and soil),B(0-10 cm was a mixed sample of mixed-based biochar and soil and 10-20 cm was soil),and C(0-10 cm was soil and 10-20 cm was a mixed sample of mixed-based biochar and soil)),four application amounts(0%(control,CK),1%,2%,and 4%of mixed-based biochar in dry soil),and two particle sizes(0.05-0.25 mm(S1)and<0.05 mm(S2))of mixed-based biochar on water infiltration and evaporation of aeolian sandy soil.We separately used five infiltration models(the Philip,Kostiakov,Horton,USDA-NRCS(United States Department of Agriculture-Natural Resources Conservation Service),and Kostiakov-Lewis models)to fit cumulative infiltration and time.Compared with CK,the application of mixed-based biochar significantly reduced cumulative soil water infiltration.Under application patterns A,B,and C,the higher the application amount and the finer the particle size were,the lower the migration speed of the wetting front.With the same application amount,cumulative soil water infiltration under application pattern A was the lowest.Taking infiltration for 10 min as an example,the reductions of cumulative soil water infiltration under the treatments of A2%(S2),A4%(S1),A4%(S2),A1%(S1),C2%(S1),and B1%(S1)were higher than 30%,which met the requirements of loess soil hydraulic parameters suitable for plant growth.The five infiltration models well fitted the effects of the treatments of application pattern C and S1 particle size(R2>0.980),but the R2 values of the Horton model exceeded 0.990 for all treatments(except for the treatment B2%(S2)).Compared with CK,all other treatments reduced cumulative soil water infiltration,except for B4%(S2).With the same application amount,cumulative soil water evaporation difference between application patterns A and B was small.Treatments of application pattern C and S1 particle size caused a larger reduction in cumulative soil water evaporation.The reductions in cumulative soil water evaporation under the treatments of C4%(S1),C4%(S2),C2%(S1),and C2%(S2)were over 15.00%.Therefore,applying 2%of mixed-based biochar with S1 particle size to the underlying layer(10-20 cm)could improve soil water infiltration while minimizing soil water evaporation.Moreover,application pattern was the main factor affecting soil water infiltration and evaporation.Further,there were interactions among the three influencing factors in the infiltration process(application amount×particle size with the most important interaction),while there were no interactions among them in the evaporation process.The results of this study could contribute to the rational application of mixed-based biochar in aeolian sandy soil and the resource utilization of urban and agricultural wastes in mining areas.展开更多
Samples from the Horqin sandy land were exposed to a series of wind velocities,and sink particles were collected at the end of the diffusion section of a wind tunnel.Grain sizes of collected samples show great variati...Samples from the Horqin sandy land were exposed to a series of wind velocities,and sink particles were collected at the end of the diffusion section of a wind tunnel.Grain sizes of collected samples show great variation because of the granularity difference of the surface samples.The original samples show lower average content of SiO_(2) and higher average content of Al _(2)O_(3),Fe_(2)O_(3),MgO,CaO,Na_(2)O,and K_(2)O than collected samples.Compared with other dust source areas in China,the Horqin sandy land had higher content of Zr,Ba,SiO_(2),Al_(2)O_(3) and K_(2)O.Compared with the average upper continental crust(UCC)composition,surface samples were rich in the content of Y,Zr,Nb,Ba,La,Nd.Geochemistry characteristics of fine grain components of the Horqin sandy land differ from those from other dust source regions,because fine-grained particles in the Horqin sandy land were mostly derived from various local deposits formed in its unique depositional environments influenced by several tectonic activities.展开更多
青海湖湖东地区出露典型的风成沉积,对气候变化响应敏感,为古气候环境的重建提供了良好研究窗口。本文选取湖东地区厚度10 m的风成砂-砂质古土壤剖面为对象,运用端元分析模型对沉积物粒度数据进行分析,提取对气候变化反映敏感的粒级组分...青海湖湖东地区出露典型的风成沉积,对气候变化响应敏感,为古气候环境的重建提供了良好研究窗口。本文选取湖东地区厚度10 m的风成砂-砂质古土壤剖面为对象,运用端元分析模型对沉积物粒度数据进行分析,提取对气候变化反映敏感的粒级组分,进一步结合粒度组分、磁化率指标,阐释各端元指示的环境意义以及近32 ka BP以来青海湖湖东地区的环境演化过程。结果表明,大水塘剖面粒度组成以砂粒物质为主,粉砂次之,黏粒最少。剖面的沉积物粒度组分可分解为3个端元:EM1是受冬季风影响的敏感粒径,指示冬季风的强弱变化;EM2指示的是区域环境受风沙作用的强弱,与EM1指示相反,但共同反映冬季风的强弱;EM3指示受区域性低空风系的影响,以尘暴的形式搬运沉积。青海湖湖东地区的环境演化过程可划分为4个阶段:(1)末次冰期间冰阶阶段(32~23.2 ka BP),气候整体较湿润,风沙活动较弱;(2)末次冰期冰盛期阶段(23.2~15.8 ka BP),气候冷偏干,风沙活动增强;(3)末次冰期冰消期阶段(15.8~9.5 ka BP),气候仍以冷偏干为主,冷暖波动,但存在小幅度升温;(4)全新世阶段(9.5 ka BP以来),早期转暖、中期最暖、晚期转凉,气候波动显著。展开更多
基金the National Natural Science Foundation of China(42230720,32160410,42167069)the Gansu Key Research and Development Program(22YF7FA078,GZTZ20240415)Gansu Province Forestry and Grassland Science and Technology Innovation Project(LCCX202303).
文摘The clay–sand barriers in Minqin desert area,China,represent a pioneering windbreak and sand fixation project with a venerable history of 60 a.However,studies on evaluating the long-term effectiveness of clay–sand barriers against aeolian erosion,particularly from the perspective of surface sediment grain size,are limited and thus insufficient to ascertain the protective impact of these barriers on regional aeolian activities.This study focused on the surface sediments(topsoil of 0–3 cm depth)of clay–sand barriers in Minqin desert area to explain their erosion resistance from the perspective of surface sediment grain size.In March 2023,six clay–sand barrier sampling plots with clay–sand barriers of different deployment durations(1,5,10,20,40,and 60 a)were selected as experimental plots,and one control sampling plot was set in an adjacent mobile sandy area without sand barriers.Surface sediment samples were collected from the topsoil of each sampling plot in the study area in April 2023 and sediment grain size characteristics were analyzed.Results indicated a predominance of fine and medium sands in the surface sediments of the study area.The deployment of clay–sand barriers cultivated a fine quality in grain size composition of the regional surface sediments,increasing the average contents of very fine sand,silt,and clay by 30.82%,417.38%,and 381.52%,respectively.This trend became markedly pronounced a decade after the deployment of clay–sand barriers.The effectiveness of clay–sand barriers in erosion resistance was manifested through reduced wind velocity,the interception of sand flow,and the promotion of fine surface sediment particles.Coarser particles such as medium,coarse,and very coarse sands predominantly accumulated on the external side of the barriers,while finer particles such as fine and very fine sands concentrated in the upwind(northwest)region of the barriers.By contrast,the contents of finest particles such as silt and clay were higher in the downwind(southeast)region of the sampling plots.For the study area,the deployment of clay–sand barriers remains one of the most cost-effective engineering solutions for aeolian erosion control,with sediment grain size parameters serving as quantitative indicators for the assessment of these barriers in combating desertification.The results of this study provide a theoretical foundation for the construction of windbreak and sand fixation systems and the optimization of artificial sand control projects in arid desert areas.
基金financially supported by the National Natural Science Foundation of China(No.52174095)the Top Innovative Talents Cultivation Fund for Doctoral Postgraduates(No.BBJ2023054).
文摘Using aeolian sand(AS)for goaf backfilling allows coordination of green mining and AS control.Cemented AS backfill(CASB)exhibits brittle fracture.Polypropylene(PP)fibers are good toughening materials.When the toughening effect of fibers is analyzed,their influence on the slurry conveying performance should also be considered.Additionally,cement affects the interactions among the hydration products,fibers,and aggregates.In this study,the effects of cement content(8wt%,9wt%,and 10wt%)and PP fiber length(6,9,and 12 mm)and dosage(0.05wt%,0.1wt%,0.15wt%,0.2wt%,and 0.25wt%)on fluidity and mechanical properties of the fibertoughened CASB(FCASB)were analyzed.The results indicated that with increases in the three aforementioned factors,the slump flow decreased,while the rheological parameters increased.Uniaxial compressive strength(UCS)increased with the increase of cement content and fiber length,and with an increase in fiber dosage,it first increased and then decreased.The strain increased with the increase of fiber dosage and length.The effect of PP fibers became more pronounced with the increase of cement content.Digital image correlation(DIC)test results showed that the addition of fibers can restrain the peeling of blocks and the expansion of fissure,and reduce the stress concentration of the FCASB.Scanning electron microscopy(SEM)test indicated that the functional mechanisms of fibers mainly involved the interactions of fibers with the hydration products and matrix and the spatial distribution of fibers.On the basis of single-factor analysis,the response surface method(RSM)was used to analyze the effects of the three aforementioned factors and their interaction terms on the UCS.The influence surface of the two-factor interaction terms and the three-dimensional scatter plot of the three-factor coupling were established.In conclusion,the response law of the FCASB properties under the effects of cement and PP fibers were obtained,which provides theoretical and engineering guidance for FCASB filling.
基金financially supported by the National Natural Science Foundation of China (NO.52174095)。
文摘The use of aeolian sand(AS)as an aggregate to prepare coal mine cemented filling materials can resolve the problems of gangue shortage and excessive AS deposits.Owing to the lack of research on the mechanism of cemented AS backfill(CASB),the response surface method(RSM)was adopted in this study to analyze the influence of ordinary Portland cement(PO)content(x_(1)),fly ash(FA)-AS(FA-AS)ratio(x_(2)),and concentration(x_(3))on the mechanical and microscopic properties of the CASB.The hydration characteristics and internal pore structure of the backfill were assessed through thermogravimetric/derivative thermogravimetric analysis,mercury intrusion porosimetry,and scanning electron microscopy.The RSM results show that the influence of each factor and interaction term on the response values is extremely significant(except x_(1)x_(3),which had no obvious effect on the 28 d strength).The uniaxial compressive strength(UCS)increased with the PO content,FA-AS ratio,and concentration.The interaction effects of x_(1)x_(2),x_(1)x_(3),and x_(2)x_(3) on the UCS at 3,7,and 28 d were analyzed.In terms of the influence of interaction items,an improvement in one factor promoted the strengthening effect of another factor.The enhancement mechanism of the curing time,PO content,and FA-AS ratio on the backfill was reflected in the increase in hydration products and pore structure optimization.By contrast,the enhancement mechanism of the concentration was mainly the pore structure optimization.The UCS was positively correlated with weight loss and micropore content but negatively correlated with the total porosity.The R^(2) value of the fitting function of the strength and weight loss,micropore content,and total porosity exceeded 0.9,which improved the characterization of the enhancement mechanism of the UCS based on the thermogravimetric analysis and pore structure.This work obtained that the influence rules and mechanisms of the PO,FA-AS,concentration,and interaction terms on the mechanical properties of the CASB provided a certain theoretical and engineering guidance for CASB filling.
基金Funded by the Applied Basic Research in Qinghai Province(No.2021-ZJ-737)the Excellent Demonstration Courses for Graduate Students of Qinghai Minzu University(No.JK-2022-09)the Top Talents of‘Kunlun Talents High-end Innovation and Entrepreneurship Talents’of Qinghai Province。
文摘In order to prepare a new material with long-term stable performance,low cost,easy construction,and ecological environmental protection,the influence of aeolian sand on the compressive and flexural strength as well as micro morphology and phase composition of magnesium oxychloride cement(MOC)was studied.The experimental results indicate that,with the increase of content of doping sand,the compressive strength and flexural strength of MOC decrease significantly.However,when the quality ratio of aeolian sand and light burned magnesia powder is 1:8,the performance meets the actual engineering needs.Namely,the compressive strength of MOC is not less than 18 MPa,and flexural strength is not less than 4 MPa.Meanwhile,within 12 months of age,the compressive strength and flexural strength are stable.There is no obvious change in phase composition,and its main phase is still 5·1·8 phase.Microscopic appearance changes from needle-like to gel-like shape.Based on engineering applications,it is found that when the novel sand-fixing material is used in the field for one year,its macroscopic feature is not damaged,compressive strength and flexural strength are also more stable,phase composition negligibly changes,and micro morphology has also been turned into be gellike shape.These further confirm the long-term stability and weather resistance of MOC doping aeolian sand,providing theoretical and technical support for the widely application of MOC in the field of sand fixation in the future.
基金Supported by Key Project of Science and Technology Research of Ministry of Education(308021)Chang Jiang Scholars Innovation Team of Ministry of Education(IRT0811)Geological Survey Project of China Geological Survey(1212010331302)~~
文摘The water characteristic curve for aeolian sand in two processes of wetting and drying was obtained by the negative water column technique.The values of fitting parameters were calculated according to Van Genuchten formula and the parameters that characterized the prosperities of aeolian sand such as the unsaturated infiltration coefficient and specific water capacity were obtained.The results showed that the water characteristic curve for aeolian sand in wetting process had greater hysteresis quality than ...
基金National Basic Research Program of China, No.2004CB720206 National Natural Science Foundation of China, No.40772118+1 种基金 No.49971009 The RGC Grant of the HKSAR, No.HKU 7243/04H The authors appreciate Zhang Huanxin and Song Weijia, Sun Zhong and Wang Yuanping for their analyses of grain size, chemical elements and Surface texture characteristics of quartz sands. Gratitude is owed to Xiao Zhaodi and Zheng Jiefang for their valuable advice on translation.
文摘The Salawusu Formation of Milanggouwan section in Salawusu River Valley includes 7 layers of paleo-mobile dune sands, and 4 layers of paleo-fixed and semi-fixed dune sands. Their structures have been observed and their grain size, surface textural features and several main chemical elements have been analyzed. The results showed that: 1) Some of the aeolian structural characteristics of these dune sands are similar to that of the recent dune sands. 2) They are also similar to the recent dune sands in grain size components, and parameters of Mz,σ, Sk and Kg, as well as in several main chemical components. 3) The scattergrams of Mz-σ and SiO2-Al2O3+TOFE and the probability curves of grain size showed that these paleo-dune sands are different from paleosols and fluvio-lacustrine facies, but are consistency with recent dune sands. 4) Quartz sands have well roundness and surface textural features such as dish-shaped pits, crescent-shaped pits, pockmarked pits, upturned cleavage plates, siliceous precipitates and siliceous crevasses, indicating that they had been carried for a long time by the wind. As the 11 layers of paleo-dune sands possess the aeolian characteristics in structure, grain size, surface textural features and chemical elements, the origin of their formation should be attributed to eolation.
文摘The Mudui stratigraphic section represents the typical records of sedimentation processes of sand dunes and interdune depressions on the east coast of Hainan Island.Based on high-density sampling and optically stimulated luminescence(OSL) dating of the strata of the section,the grain-size composition,grain-size parameters,cumulative distribution probability curve,and grain-size-sensitivity indexes(SC/D) were analyzed.The analyzed results show that the grain-size features of aeolian sand,weakly developed sandy paleosol,two-facies(aeolian and aqueous) deposits,and lagoon deposits are all different.This indicates four evolutionary phases of the sedimentary environment of the east coast of Hainan Island since 38 ka B.P.Phase I:38-22 ka B.P.;phase II:22-17 ka B.P.;phase III:17-10 ka B.P.;phase IV:10 ka B.P.-present.The climate experienced the hot-wet/hot-dry,hot-wet/hot-dry,and warm-wet/hot-wet fluctuations,and the sedimentary environment also underwent lagoon deposition,dune and interdune depression deposition,dune stabilization and soil development,shifting sand deposition,and evolutionary processes.
基金supported by the National Natural Science Foundation of China (Project No. 10904055)
文摘A wind tunnel experiment was performed to investigate aeolian grain motions in the transverse direction, which is perpendicular to the incoming flow and parallels the sand bed. The trajectories in the horizontal plane were recorded by high-speed camera. Statistical analysis of 630 trajectories shows that both the motion orientation and the time-averaged speed follow Gaussian distributions. An exclusive method was used to analyze the driving mechanism. It was concluded that the three-dimensional turbulent air flow, rather than the spin of grain or grain-bed collisions, controls the transverse motion.
文摘Aeolian sand sample from Tengger desert, located in the southern part of Inner Mongolia (China) was characterized for major elemental composition and mineralogy by EPMA, XRF and XRD methods. The objective of this research was to provide data which would be a guide to aid future beneficiation of this sand, especially for the economic exploitation of feldspar and quartz which have a wide range of applications in various industries like plastic, paint, ceramics and glass industries. The elemental analysis of the sample was carried out by X-ray fluorescence spectrometer and chemical analysis while the minerals present were identified by an X-ray diffraction analyzer. The sand was discovered to contain basically SiO2 (82.43%), Al2O3 (7.68%), Na2O + K2O (4.37%) and TiO2 and Fe2O3 as the main impurities. It was also discovered that grinding of the sand is required to enhance the liberation of the minerals and the separation methods recommended are magnetic separation and flotation. It was therefore concluded that aeolian sand is a suitable source of quartz and feldspar for use in the industry.
基金funded by the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZZD-EW-04-04)the National Natural Science Foundation of China (Nos., 41271215, 41501220)+1 种基金the China Postdoctoral Science Foundation (No. 2015M570861)the State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University (No. 2015-KF-13)
文摘The variation of the Asian winter monsoonal strength has seriously affected the climate and environmental conditions in the Asian monsoonal region, and even in marginal islands and the ocean in the East Asian region. However, relevant under-standing remains unclear due to the lack of suitable geological materials and effective proxies in the key study areas. Here, we present a grain-size record derived from the palaeo-aeolian sand dune in the southeastern Mu Us Desert, together with other proxies and OSL dating, which reflect a relatively detailed history of the winter monsoon and abrupt environmental events during the past 4.2 ka. Our grain-size standard deviation model indicated that 〉224 μm content can be considered as an indicator of the intensity of Asian winter monsoon, and it shows declined around 4.2–2.1 ka, enhanced but unstable in 2.1–0.9 ka, and obviously stronger since then. In addition, several typical climate events were also documented, forced by the periodic variation of winter monsoonal intensity. These include the cold intervals of 4.2, 2.8, 1.4 ka, and the Little Ice Age (LIA), and relatively warm sub-phases around 3.0, 2.1, 1.8 ka, and the Medieval Warm Period (MWP), which were roughly accordant with the records of the aeolian materials, peat, stalagmites, ice cores, and sea sediments in various latitudes of the Northern Hemisphere. Combined with the previous progresses of the Asian summer monsoon, we prelimi-narily confirmed a millennial-scale anti-correlation of Asian winter and summer monsoons in the Late Holocene epoch. This study suggests that the evolution of the palaeo-aeolian sand dune has the potential for comprehending the history of Asian monsoon across the desert regions of the modern Asian monsoonal margin in northern China.
文摘The Sahelian region of Mali is one of the areas seriously affected by sandy desertification in the world. Widely distributed aeolian sand lays a material basis for the development of sandy desertification. Aeolian sand in the region is dominated by fine sand, followed by very fine sand. Sand materials contained in various sand dunes are different in grain size to a certain extent and the mineral compositions of dune sand are dominated by stable and extreme stable minerals, with high stability and maturity. Aeolian sand in the region mainly comes from the reactivation of ancient sand dunes, the transportation of recent runing water and the sand supply of dry lakes and arroyos. Since the Pliocene this region has experienced four major evolution periods of aelian sand, namely from the Pliocene to the early Quaternary, last glacial period, the Holocene and present.
基金supported by the State Key Laboratory of Water Resource Protection and Utilization in Coal Mining,Open Foundation Ecological Self-Repair Mechanism and Promotion Technology in Shendong Mining Area,China(GJNY-18-73.19)the National Key Research and Development Program of China(2020YFC1806502)。
文摘Aeolian sandy soil in mining areas exhibits intense evaporation and poor water retention capacity.This study was designed to find a suitable biochar application method to improve soil water infiltration and minimize soil water evaporation for aeolian sand soil.Using the indoor soil column method,we studied the effects of three application patterns(A(0-20 cm was a mixed sample of mixed-based biochar and soil),B(0-10 cm was a mixed sample of mixed-based biochar and soil and 10-20 cm was soil),and C(0-10 cm was soil and 10-20 cm was a mixed sample of mixed-based biochar and soil)),four application amounts(0%(control,CK),1%,2%,and 4%of mixed-based biochar in dry soil),and two particle sizes(0.05-0.25 mm(S1)and<0.05 mm(S2))of mixed-based biochar on water infiltration and evaporation of aeolian sandy soil.We separately used five infiltration models(the Philip,Kostiakov,Horton,USDA-NRCS(United States Department of Agriculture-Natural Resources Conservation Service),and Kostiakov-Lewis models)to fit cumulative infiltration and time.Compared with CK,the application of mixed-based biochar significantly reduced cumulative soil water infiltration.Under application patterns A,B,and C,the higher the application amount and the finer the particle size were,the lower the migration speed of the wetting front.With the same application amount,cumulative soil water infiltration under application pattern A was the lowest.Taking infiltration for 10 min as an example,the reductions of cumulative soil water infiltration under the treatments of A2%(S2),A4%(S1),A4%(S2),A1%(S1),C2%(S1),and B1%(S1)were higher than 30%,which met the requirements of loess soil hydraulic parameters suitable for plant growth.The five infiltration models well fitted the effects of the treatments of application pattern C and S1 particle size(R2>0.980),but the R2 values of the Horton model exceeded 0.990 for all treatments(except for the treatment B2%(S2)).Compared with CK,all other treatments reduced cumulative soil water infiltration,except for B4%(S2).With the same application amount,cumulative soil water evaporation difference between application patterns A and B was small.Treatments of application pattern C and S1 particle size caused a larger reduction in cumulative soil water evaporation.The reductions in cumulative soil water evaporation under the treatments of C4%(S1),C4%(S2),C2%(S1),and C2%(S2)were over 15.00%.Therefore,applying 2%of mixed-based biochar with S1 particle size to the underlying layer(10-20 cm)could improve soil water infiltration while minimizing soil water evaporation.Moreover,application pattern was the main factor affecting soil water infiltration and evaporation.Further,there were interactions among the three influencing factors in the infiltration process(application amount×particle size with the most important interaction),while there were no interactions among them in the evaporation process.The results of this study could contribute to the rational application of mixed-based biochar in aeolian sandy soil and the resource utilization of urban and agricultural wastes in mining areas.
基金This research was supported by the National Key R&D Program of China(No.2020YFA0608404)a grant from the National Nature Science Foundation of China(41101006)and the Project of the Key Laboratory of Desert and Desertification,Chinese Academy of Sciences(KLDD-2019-008).
文摘Samples from the Horqin sandy land were exposed to a series of wind velocities,and sink particles were collected at the end of the diffusion section of a wind tunnel.Grain sizes of collected samples show great variation because of the granularity difference of the surface samples.The original samples show lower average content of SiO_(2) and higher average content of Al _(2)O_(3),Fe_(2)O_(3),MgO,CaO,Na_(2)O,and K_(2)O than collected samples.Compared with other dust source areas in China,the Horqin sandy land had higher content of Zr,Ba,SiO_(2),Al_(2)O_(3) and K_(2)O.Compared with the average upper continental crust(UCC)composition,surface samples were rich in the content of Y,Zr,Nb,Ba,La,Nd.Geochemistry characteristics of fine grain components of the Horqin sandy land differ from those from other dust source regions,because fine-grained particles in the Horqin sandy land were mostly derived from various local deposits formed in its unique depositional environments influenced by several tectonic activities.
文摘青海湖湖东地区出露典型的风成沉积,对气候变化响应敏感,为古气候环境的重建提供了良好研究窗口。本文选取湖东地区厚度10 m的风成砂-砂质古土壤剖面为对象,运用端元分析模型对沉积物粒度数据进行分析,提取对气候变化反映敏感的粒级组分,进一步结合粒度组分、磁化率指标,阐释各端元指示的环境意义以及近32 ka BP以来青海湖湖东地区的环境演化过程。结果表明,大水塘剖面粒度组成以砂粒物质为主,粉砂次之,黏粒最少。剖面的沉积物粒度组分可分解为3个端元:EM1是受冬季风影响的敏感粒径,指示冬季风的强弱变化;EM2指示的是区域环境受风沙作用的强弱,与EM1指示相反,但共同反映冬季风的强弱;EM3指示受区域性低空风系的影响,以尘暴的形式搬运沉积。青海湖湖东地区的环境演化过程可划分为4个阶段:(1)末次冰期间冰阶阶段(32~23.2 ka BP),气候整体较湿润,风沙活动较弱;(2)末次冰期冰盛期阶段(23.2~15.8 ka BP),气候冷偏干,风沙活动增强;(3)末次冰期冰消期阶段(15.8~9.5 ka BP),气候仍以冷偏干为主,冷暖波动,但存在小幅度升温;(4)全新世阶段(9.5 ka BP以来),早期转暖、中期最暖、晚期转凉,气候波动显著。