期刊文献+
共找到4,985篇文章
< 1 2 250 >
每页显示 20 50 100
Mechanical behaviors of warm and ice-rich frozen soil stabilized with sulphoaluminate cement
1
作者 WANG Honglei ZHANG Hu +2 位作者 ZHANG Jianming ZHANG Qi YIN Zhenhua 《Journal of Mountain Science》 SCIE CSCD 2024年第1期335-345,共11页
The warm and ice-rich frozen soil is characterized by high unfrozen water content, low shear strength and large compressibility, which is unreliable to meet the stability requirements of engineering infrastructures an... The warm and ice-rich frozen soil is characterized by high unfrozen water content, low shear strength and large compressibility, which is unreliable to meet the stability requirements of engineering infrastructures and foundations in permafrost regions. In this study, a novel approach for stabilizing the warm and ice-rich frozen soil with sulphoaluminate cement was proposed based on chemical stabilization. The mechanical behaviors of the stabilized soil, such as strength and stress-strain relationship, were investigated through a series of triaxial compression tests conducted at -1.0℃, and the mechanism of strength variations of the stabilized soil was also explained based on scanning electron microscope test. The investigations indicated that the strength of stabilized soil to resist failure has been improved, and the linear Mohr-Coulomb criteria can accurately reflect the shear strength of stabilized soil under various applied confining pressure. The increase in both curing age and cement mixing ratio were favorable to the growth of cohesion and internal friction angle. More importantly, the strength improvement mechanism of the stabilized soil is attributed to the formation of structural skeleton and the generation of cementitious hydration products within itself. Therefore, the investigations conducted in this study provide valuable references for chemical stabilization of warm and ice-rich frozen ground, thereby providing a basis for in-situ ground improvement for reinforcing warm and ice-rich permafrost foundations by soil-cement column installation. 展开更多
关键词 Permafrost regions Frozen soil Mechanical behavior Chemical stabilization Ground improvement Ground modification
下载PDF
Effect of CO_(2)exposure on the mechanical strength of geopolymerstabilized sandy soils
2
作者 Hamid Reza Razeghi Armin Geranghadr +2 位作者 Fatemeh Safaee Pooria Ghadir Akbar A.Javadi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期670-681,共12页
In recent years,there has been growing interest in developing methods for mitigating greenhouse effect,as greenhouse gas emissions continue to contribute to global temperature rise.On the other hand,investigating geop... In recent years,there has been growing interest in developing methods for mitigating greenhouse effect,as greenhouse gas emissions continue to contribute to global temperature rise.On the other hand,investigating geopolymers as environmentally friendly binders to mitigate the greenhouse effect using soil stabilization has been widely conducted.However,the effect of CO_(2)exposure on the mechanical properties of geopolymer-stabilized soils is rarely reported.In this context,the effect of CO_(2)exposure on the mechanical and microstructural features of sandy soil stabilized with volcanic ash-based geopolymer was investigated.Several factors were concerned,for example the binder content,relative density,CO_(2)pressure,curing condition,curing time,and carbonate content.The results showed that the compressive strength of the stabilized sandy soil specimens with 20%volcanic ash increased from 3 MPa to 11 MPa.It was also observed that 100 kPa CO_(2)pressure was the optimal pressure for strength development among the other pressures.The mechanical strength showed a direct relationship with binder content and carbonate content.Additionally,in the ambient curing(AC)condition,the mechanical strength and carbonate content increased with the curing time.However,the required water for carbonation evaporated after 7 d of oven curing(OC)condition and as a result,the 14-d cured samples showed lower mechanical strength and carbonate content in comparison with 7-d cured samples.Moreover,the rate of strength development was higher in OC cured samples than AC cured samples until 7 d due to higher geopolymerization and carbonation rate. 展开更多
关键词 soil stabilization CO_(2)effect GEOPOLYMER
下载PDF
Impact of wetting-drying cycles and acidic conditions on the soil aggregate stability of yellow‒brown soil
3
作者 XIA Zhenyao NI Yuanzhen +2 位作者 LIU Deyu WANG Di XIAO Hai 《Journal of Mountain Science》 SCIE CSCD 2024年第6期2075-2090,共16页
Soil aggregate is the basic structural unit of soil,which is the foundation for supporting ecosystem functions,while its composition and stability is significantly affected by the external environment.This study was c... Soil aggregate is the basic structural unit of soil,which is the foundation for supporting ecosystem functions,while its composition and stability is significantly affected by the external environment.This study was conducted to explore the effect of external environment(wetting-drying cycles and acidic conditions)on the soil aggregate distribution and stability and identify the key soil physicochemical factors that affect the soil aggregate stability.The yellow‒brown soil from the Three Gorges Reservoir area(TGRA)was used,and 8 wetting-drying conditions(0,1,2,3,4,5,10 and 15 cycles)were simulated under 4 acidic conditions(pH=3,4,5 and 7).The particle size distribution and soil aggregate stability were determined by wet sieving method,the contribution of environmental factors(acid condition,wetting-drying cycle and their combined action)to the soil aggregate stability was clarified and the key soil physicochemical factors that affect the soil aggregate stability under wetting-drying cycles and acidic conditions were determined by using the Pearson’s correlation analysis,Partial least squares path modeling(PLS‒PM)and multiple linear regression analysis.The results indicate that wetting-drying cycles and acidic conditions have significant effects on the stability of soil aggregates,the soil aggregate stability gradually decreases with increasing number of wetting-drying cycles and it obviously decreases with the increase of acidity.Moreover,the combination of wetting-drying cycles and acidic conditions aggravate the reduction in the soil aggregate stability.The wetting-drying cycles,acidic conditions and their combined effect imposes significant impact on the soil aggregate stability,and the wetting-drying cycles exert the greatest influence.The soil aggregate stability is significantly correlated with the pH,Ca^(2+),Mg^(2+),maximum disintegration index(MDI)and soil bulk density(SBD).The PLS‒PM and multiple linear regression analysis further reveal that the soil aggregate stability is primarily influenced by SBD,Ca^(2+),and MDI.These results offer a scientific basis for understanding the soil aggregate breakdown mechanism and are helpful for clarifying the coupled effect of wetting-drying cycles and acid rain on terrestrial ecosystems in the TGRA. 展开更多
关键词 Yellow‒brown soil Wetting-drying cycles Acidic conditions soil aggregate stability soil disintegration
下载PDF
Biopolymer stabilization of clayey soil
4
作者 Mahdieh Azimi Amin Soltani +2 位作者 Mehdi Mirzababaei Mark B.Jaksa Nanjappa Ashwath 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2801-2812,共12页
This study investigates the efficacy of sodium alginate(SA),xanthan gum(XG),guar gum(GG)and chitosan(CS)d each applied at five different solid biopolymer-to-water mass ratios(or dosages)and cured for 7 d and 28 d d on... This study investigates the efficacy of sodium alginate(SA),xanthan gum(XG),guar gum(GG)and chitosan(CS)d each applied at five different solid biopolymer-to-water mass ratios(or dosages)and cured for 7 d and 28 d d on the unconfined compressive strength(UCS)performance of a high plasticity clayey soil.Moreover,on identifying the optimum biopolymer-treatment scenarios,their performance was compared against conventional stabilization using hydrated lime.For a given curing time,the UCS for all biopolymers followed a riseefall trend with increasing biopolymer dosage,peaking at an optimum dosage and then subsequently decreasing,such that all biopolymer-stabilized samples mobilized higher UCS values compared to the unamended soil.The optimum dosage was found to be 1.5%for SA,XG and CS,while a notably lower dosage of 0.5%was deemed optimum for GG.Similarly,for a given biopolymer type and dosage,increasing the curing time from 7 d to 28 d further enhanced the UCS,with the achieved improvements being generally more pronounced for XG-and CS-treated cases.None of the investigated biopolymers was able to produce UCS improvements equivalent to those obtained by the 28-d soilelime samples;however,the optimum XG,GG and CS dosages,particularly after 28 d of curing,were easily able to replicate 7-d lime stabilization outcomes achieved with as high as twice the soil’s lime demand.Finally,the fundamental principles of clay chemistry,in conjunction with the soil mechanics framework,were employed to identify and discuss the clayebiopolymer stabilization mechanisms. 展开更多
关键词 soil stabilization High plasticity clay Biopolymer dosage Hydrated lime Curing time Unconfined compressive strength(UCS)
下载PDF
Calcium carbonate promotes the formation and stability of soil macroaggregates in mining areas of China
5
作者 Junyu Xie Jianyong Gao +7 位作者 Hanbing Cao Jiahui Li Xiang Wang Jie Zhang Huisheng Meng Jianping Hong Tingliang Li Minggang Xu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期1034-1047,共14页
We studied changes in the concentrations of aggregate-cementing agents after different reclamation times and with different fertilization regimes,as well as the formation mechanism of aggregates in reclaimed soil,to p... We studied changes in the concentrations of aggregate-cementing agents after different reclamation times and with different fertilization regimes,as well as the formation mechanism of aggregates in reclaimed soil,to provide a theoretical basis for rapid reclamation of soil fertility in the subsidence area of coal mines in Shanxi Province,China.In this study,soil samples of 0–20 cm depth were collected from four fertilization treatments of a longterm experiment started in 2008:no fertilizer (CK),inorganic fertilizer (NPK),chicken manure compost (M),and50%inorganic fertilizer plus 50%chicken manure compost (MNPK).The concentrations of cementing agents and changes in soil aggregate size distribution and stability were analysed.The results showed that the formation of>2 mm aggregates,the aggregate mean weight diameter (MWD),and the proportion of>0.25 mm water-stable aggregates (WR_(0.25)) increased significantly after 6 and 11 years of reclamation.The concentration of organic cementing agents tended to increase with reclamation time,whereas free iron oxide (Fed) and free aluminium oxide(Ald) concentrations initially increased but then decreased.In general,the MNPK treatment signi?cantly increased the concentrations of organic cementing agents and CaCO_(3),and CaCO_(3) increased by 60.4%at 11 years after reclamation.Additionally,CaCO_(3) had the greatest effect on the stability of aggregates,promoting the formation of>0.25 mm aggregates and accounting for 54.4%of the variance in the proportion and stability of the aggregates.It was concluded that long-term reclamation is bene?cial for improving soil structure.The MNPK treatment was the most effective measure for increasing maize grain yield and concentration of organic cementing agents and CaCO_(3). 展开更多
关键词 reclamation time manure combined with inorganic fertilizer soil aggregate stability cementing agents CaCO_(3)
下载PDF
The effect of seismic action on stability of saline soil subgrade in cold region based on isothermal stratification method
6
作者 Jie Cheng Yu Zhang +2 位作者 Ying Ma Xuerui Chen Ning An 《Earthquake Research Advances》 CSCD 2024年第3期66-81,共16页
With the change of seasons, the shear strength of saline soil subgrade filler will change with the change of external temperature, which will aggravate the adverse effects of seismic on the subgrade. To explore the in... With the change of seasons, the shear strength of saline soil subgrade filler will change with the change of external temperature, which will aggravate the adverse effects of seismic on the subgrade. To explore the influence of seismic action on the stability of saline soil subgrade under the influence of temperature on the strength of saline soil subgrade filler, this paper first carried out saline soil shear tests at different temperatures to obtain the influence of temperature on the shear strength of saline soil. Then, the temperature field of the saline soil subgrade was simulated, and then based on the subgrade isothermal stratification model and FLAC3D, the displacement and acceleration amplification effects of seismic action on the shady slope, sunny slope and subgrade of saline soil subgrade in different months were analyzed. The following conclusions were finally drawn: under the action of seismic, In the process of the change of subgrade temperature of Qarhan-Golmud Expressway between 7.7°C and 27°C, the change of saline soil cohesion is the main factor affecting the stability of subgrade slope, and the maximum and minimum values of subgrade surface settlement appear in September and June of each year,respectively. In August, the differences of settlement between the shady slope and the sunny slope shoulder of the subgrade were the largest, and the acceleration of the shady slope and the sunny slope and the inside of the subgrade changed most significantly in the vertical direction. Special attention should be paid to the seismic early warning in the above key months;In the range from both sides of the shoulder to the centerline of the roadbed,the acceleration amplification effect starts to increase significantly from about 3m from the centerline of the roadbed to the centerline, so it is necessary to pay attention to the seismic design of this range. 展开更多
关键词 Subgrade stability Saline soils Acceleration amplification effect Seismic design
下载PDF
The effects of co-utilizing green manure and rice straw on soil aggregates and soil carbon stability in a paddy soil in southern China 被引量:1
7
作者 ZHANG Zi-han NIE Jun +7 位作者 LIANG Hai WEI Cui-lan WANG Yun LIAO Yu-lin LU Yan-hong ZHOU Guo-peng GAO Song-juan CAO Wei-dong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第5期1529-1545,共17页
The co-utilization of green manure (GM) and rice straw (RS) in paddy fields has been widely applied as an effective practice in southern China.However,its effects on soil aggregate and soil organic carbon (SOC) stabil... The co-utilization of green manure (GM) and rice straw (RS) in paddy fields has been widely applied as an effective practice in southern China.However,its effects on soil aggregate and soil organic carbon (SOC) stability remain unclear.In the present study,the effect of GM,RS,and co-utilization of GM and RS on particle size distribution of soil aggregates and SOC density fractions were measured in a field experiment.The experiment included six treatments,i.e.,winter fallow (WF) without RS return (Ctrl),WF with 50%RS return (1/2RS),WF with 100%RS return (RS),GM without RS return (GM),GM with 50%RS return (GM1/2RS) and GM with 100%RS return (GMRS).The results showed that the proportion of small macro-aggregates (0.25–2 mm) and the mean weight diameter (MWD) of aggregates in the GMRS treatment was greater (by 18.9 and 3.41%,respectively) than in the RS treatment,while the proportion of silt+clay particles (<0.053 mm) was lower (by 14.4%).The concentration of SOC in microaggregates (0.053–0.25 mm)and silt+clay particles was higher in the GMRS treatment than in GM and RS treatments individually.The concentration and proportion of free light organic carbon (fLOC) in aggregates of various particle sizes and bulk soil was greater in the GMRS treatment than the RS treatment,whereas the concentration and proportion of mineral-associated organic carbon in small macroaggregates,microaggregates,and bulk was lower in the GMRS treatment than in the RS treatment.The proportion of intra-aggregate particulate organic carbon (iPOC) was greater in the GMRS treatment than in GM treatment.The GMRS treatment had strong positive effects on iPOC in small macroaggregates,suggesting that SOC was transferred from fLOC to iPOC.In conclusion,co-utilizing green manure and rice straw cultivated the SOC pool by increasing the concentration of fLOC and improved soil carbon stability by promoting the sequestration of organic carbon in iPOC as a form of physical protection. 展开更多
关键词 soil aggregation milk VETCH rice straw SoC density fractions C stabilITY PADDY soil
下载PDF
Effect of Friedel's salt on strength enhancement of stabilized chloride saline soil 被引量:6
8
作者 CHENG Yin LI Zhan-guo +1 位作者 HUANG Xin BAI Xiao-hong 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第4期937-946,共10页
In the field of soil stabilization, only calcium silicate hydrate(CSH) and ettringite(AFt) as hydration products have been reported to directly contribute to the strength enhancement of the soil. A chloride dredger fi... In the field of soil stabilization, only calcium silicate hydrate(CSH) and ettringite(AFt) as hydration products have been reported to directly contribute to the strength enhancement of the soil. A chloride dredger fill, an artificial chloride saline soil, and a non-saline soil were stabilized by Portland cement(PC) and PC with Ca(OH)_2(CH) with different contents. A series of unconfined compressive strength(UCS) tests of stabilized soil specimen after curing for 7 d and 28 d were carried out, and the hydration products and microstructure of the specimens were observed by X-ray diffractometry(XRD), scanning electronic microscopy(SEM), and energy-dispersive X-ray analysis(EDXA). The results showed that the strengths of PC+CH-stabilized chloride saline soils were much higher than those of PC-stabilized soils. A new hydration product of calcium aluminate chloride hydrate, also known as Friedel's salt, appeared in the PC+CH-stabilized chloride saline soils. The solid-phase volume of Friedel's salt expanded during the formation of the hydrate; this volume filled the pores in the stabilized soil. This pore-filling effect was the most important contribution to the significantly enhanced strength of the PC+CH-stabilized chloride saline soils. On the basis of this understanding, a new optimized stabilizer was designed according to the concept that the chloride in saline soil could be utilized as a component of the stabilizer. The strength of the chloride saline soils stabilized by the optimized stabilizer was even further increased compared with that of the PC+CH-stabilized soils. 展开更多
关键词 CHLORIDE SALINE soil stabilized soil Friedel’s SALT strength enhancement EFFECT
下载PDF
Laboratory tests on enhancing strength of cement stabilized organicsoil with addition of phosphor gypsum and calcium almninate cement 被引量:6
9
作者 Zhang Dingwen Liu Ziming +1 位作者 Sun Xun Cao Zhiguo 《Journal of Southeast University(English Edition)》 EI CAS 2017年第3期301-308,共8页
In order to improve the engineering properties oforganic soil, a new stabilization agent is developed by theaddition of phosphor gypsum and calcium aluminate cement.The artificial organic soil is applied in the study ... In order to improve the engineering properties oforganic soil, a new stabilization agent is developed by theaddition of phosphor gypsum and calcium aluminate cement.The artificial organic soil is applied in the study and a series oflaboratory tests were carried out to explore new stabilizationagents and determine the optimal dosage. Unconfinedcompressive strength (UCS) and the pH value of soil poresolution were measured. The influence of organic content,agent composition and curing time on the UCS of sampleswere also researched. The test results show that the UCS ofstabilized organic soils by a new agent achieves approximately800 and 1 200 kPa at 28 and 90 d curing time, respectively.The pH test results show that a high alkaline environment is anecessary and not a sufficient condition for high strength. Thestrength of stabilized soil is related to the hydration product ofstabilization agent. The mechanism of strength formation wasalso explored by X-ray diffraction (XRD), mercury intrusionporosimetry (MIP) and scanning electron microscope (SEM)tests. A large amount of ettringite is produced to fill the largepores of organic soils, which contribute to the high UCS valueof stabilized organic soils. The new agent can solidify theorganic soil successfully as well as provide a new approach totreat the organic soil. 展开更多
关键词 organic soil stabilization STRENGTH ETTRINGITE
下载PDF
Cement-lime stabilization of crude oil contaminated kaolin clay 被引量:5
10
作者 Opeyemi E.Oluwatuyi Oluwapelumi O.Ojuri Arman Khoshghalb 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第1期160-167,共8页
The present study examines the effect of stabilization on the geo-environmental properties of crude oil contaminated kaolin clay.Lime and cement were mixed in a ratio of 1:2 and added to the simulated crude oil contam... The present study examines the effect of stabilization on the geo-environmental properties of crude oil contaminated kaolin clay.Lime and cement were mixed in a ratio of 1:2 and added to the simulated crude oil contaminated kaolin clay at different percentages(5%,10%,15%,and 20%)as a stabilizing binder.Parameters investigated include consistency limits,unconfined compressive strength(UCS),and direct shear,and compressibility and leaching characteristics of the untreated and stabilized soils.The experimental testing reveals a decrease in the consistency limits with addition of the stabilizing binder.Maximum UCS values occurred for 15%cement-lime stabilized kaolin clay at different curing periods(i.e.0 d,7 d,14 d,and 28 d).By increasing the cement-lime content from 5%to 15%,the UCS values of the stabilized clay increase from 185 kPa to 350 kPa and from 785 kPa to 1160 kPa for uncured and 28 dcured samples,respectively.Both the compression and recompression indices of the contaminated kaolin clay from the consolidation test decrease by 40%and 50%,respectively,with 20%stabilizing binder addition.The leachability of the contaminated clay also reduces with incorporation of cement and lime.According to the scanning electron microscope(SEM)test,addition of stabilizing binder transforms the dispersed structure of contaminated kaolin clay into a knitted flocculated structure.The study shows the effectiveness of cement-lime mix in stabilizing the contaminated kaolin clay and the possible use of stabilized contaminated kaolin clay as an alternative construction material. 展开更多
关键词 cement-lime CONSOLIDATION Contaminated clay CRUDE oil stabilIZATION
下载PDF
Mechanism and Optimal Application of Chemical Additives for Accelerating Early Strength of Lime-flyash Stabilized Soils 被引量:3
11
作者 姜增国 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2005年第3期110-112,共3页
To accelerate the early strength of lime-flyush stabilized soil for extending its further uses in highway and shortening highway constraction time, five kinds of chemical odditives were chosen on the basis of mechanis... To accelerate the early strength of lime-flyush stabilized soil for extending its further uses in highway and shortening highway constraction time, five kinds of chemical odditives were chosen on the basis of mechanism analysis of accelerating early strength in highway as a semi-rigid base materhd, and a series of experiments about the effect of differeat kinds of additives and quantity on the early strength of the stabilized soll were tested. The results show that chemical additives can efftciently improve the early strength of lime-flyush stabilized soil both the 7 d and 28d, and the optimum quantity for above chemical additive is 1.5%-2.5% approximately. Some suggestions for the practical construction were also proposed. 展开更多
关键词 LIME-FLYASH stabilized soil chemical additives early strength
下载PDF
Sugarcane press mud modification of expansive soil stabilized at optimum lime content:Strength,mineralogy and microstructural investigation 被引量:6
12
作者 Jijo James 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第2期395-402,共8页
This study attempted to investigate the potential of sugarcane press mud(PM) as a secondary additive in conjunction with lime for the stabilization of an expansive soil.The physico-mechanical properties of an expansiv... This study attempted to investigate the potential of sugarcane press mud(PM) as a secondary additive in conjunction with lime for the stabilization of an expansive soil.The physico-mechanical properties of an expansive soil,such as plasticity,shrink-swell behavior,unconfined compressive strength(UCS),mineralogical and microstructural characteristics were investigated.The expansive soil was stabilized at its optimum lime content(7%) for producing maximum strength,and was modified with four different quantities of PM in small dosages(0.25%-2%).Cylindrical soil samples,38 mm in diameter and 76 mm in height,were cast and cured for varying periods to evaluate the strength of the amended soil.The spent samples after strength tests were further used for determination of other properties.The test results revealed that PM modification led to a substantial improvement in 7-d strength and noticeable increase in 28-d strength of the lime-stabilized soil(LSS).The addition of PM does not cause any detrimental changes to the shrink-swell properties as well as plasticity nature of the stabilized soil,despite being a material of organic origin.Mineralogical investigation revealed that the formation of calcium silicate hydrate(CSH) minerals,similar to that of pure lime stabilization with only the type of mineral varying due to the modification of PM addition,does not significantly alter the microstructure of the LSS except for superficial changes being noticed. 展开更多
关键词 Expansive soil LIME stabilization PRESS mud(PM) STRENGTH Shrink-swell MINERALOGY Microstructure
下载PDF
Fabric changes induced by super-absorbent polymer on cementelime stabilized excavated clayey soil 被引量:5
13
作者 Xia Bian Lingling Zeng +3 位作者 Xiaozhao Li Xiusong Shi Shuming Zhou Fuqing Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第5期1124-1135,共12页
This paper studies the microstructure variation induced by super-absorbent polymer(SAP)to understand the mechanism of macroscopic strength improvement of stabilized soil.The fabric changes of cement elime stabilized s... This paper studies the microstructure variation induced by super-absorbent polymer(SAP)to understand the mechanism of macroscopic strength improvement of stabilized soil.The fabric changes of cement elime stabilized soil were analyzed with respect to the variation of SAP content,water content,lime content and curing time,using mercury intrusion porosimetry(MIP)tests.It can be observed that the delimitation pore diameter between inter-and intra-aggregate pores was 0.2 mm for the studied soil,determined through the intrusion/extrusion cycles.Experimental results showed that fabric in both inter-and intra-aggregate pores varied significantly with SAP content,lime content,water content and curing time.Two main changes in fabric due to SAP are identified as:(1)an increase in intra-aggregate pores(<0.2 mm)due to the closer soilecementelime cluster space at higher SAP content;and(2)a decrease in inter-aggregate pores represented by a reduction in small-pores(0.2e2 mm)due to the lower pore volume of soil mixture after water absorption by SAP,and a slight increase in large-pores(>2 mm)due to the shrinkage of SAP particle during the freezeedry process of MIP test.Accordingly,the strength gain due to SAP for cementelime stabilized soil was mainly due to a denser fabric with less interaggregate pores.The cementitious products gradually developed over time,leading to an increase in intra-aggregate pores with an increasing proportion of micro-pores(0.006e0.2 mm).Meanwhile,the inter-aggregate pores were filled by cementitious products,resulting in a decrease in total void ratio.Hence,the strength development over time is attributable to the enhancement of cementation bonding and the refinement of fabric due to the increasing cementitious compounds. 展开更多
关键词 FABRIC soil stabilization Microstructure Super-absorbent polymer(SAP)
下载PDF
Novel protection systems for the improvement in soil and water stability of expansive soil slopes
14
作者 MA Shao-kun HE Ben-fu +3 位作者 MA Min HUANG Zhen CHEN Sheng-jia YUE Huan 《Journal of Mountain Science》 SCIE CSCD 2023年第10期3066-3083,共18页
To improve the soil and water stability of expansive soil slopes and reduce the probability of slope failure,novel protection systems based on polymer waterproof coatings(PWC)were used in this study.Herein,three group... To improve the soil and water stability of expansive soil slopes and reduce the probability of slope failure,novel protection systems based on polymer waterproof coatings(PWC)were used in this study.Herein,three groups of expansive soil slope model tests were designed to investigate the effects of polyester nonwovens and PWC(P-PWC)composite protection system,three-dimensional vegetation network and PWC(T-PWC)composite protection system,and nonprotection on the soil and water behavior in the slopes under precipitation–evaporation cycles.The results showed that the moisture change of P-PWC and T-PWC composite protected slopes was significantly smaller than that of bare slope,which reduced the sensitivity of slope moisture to environmental changes and improved its stability.The soil temperature of the slope protected by the P-PWC and T-PWC systems at a depth of 70 cm increased by 5.6℃ and 2.7℃,respectively.Using PWC composite protection systems exhibited better thermal storage performance,which could increase the utilization of shallow geothermal resources.Moreover,the maximum average crack widths of the bare slopes were 7.89 and 3.17 times those of the P-PWC and TPWC protected slopes,respectively,and the maximum average crack depths were 6.87 and 3 times those of the P-PWC and T-PWC protected slopes,separately.The PPWC protection system weakened the influence of hydro–thermal coupling on the slopes,inhibited the development of cracks on the slopes,and reduced the soil erosion.The maximum soil erosion of slopes protected by P-PWC and T-PWC systems was 332 and 164 times lower than that of bare slope,respectively.The P-PWC and T-PWC protection systems achieved excellent"anti-seepage and moisture retention"and anti-erosion effects,thus improving the soil and water stability of slopes.These findings can provide important guiding reference for controlling rainwater infiltration and soil erosion in expansive soil slope projects. 展开更多
关键词 soil and water stability Expansive soil slope Polymer waterproof coating Model test soil erosion
下载PDF
Plasticity,strength,permeability and compressibility characteristics of black cotton soil stabilized with precipitated silica 被引量:1
15
作者 R.Gobinath G.P.Ganapathy +3 位作者 I.I.Akinwumi S.Kovendiran S.Hema M.Thangaraj 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第10期2688-2694,共7页
The suitability of using precipitated silica(PS) from the burning of rice husk was investigated to improve the geotechnical engineering properties of a black cotton soil. A laboratory experimental program consisting o... The suitability of using precipitated silica(PS) from the burning of rice husk was investigated to improve the geotechnical engineering properties of a black cotton soil. A laboratory experimental program consisting of series of specific gravity, Atterberg limits, compaction, California bearing ratio(CBR), unconfined compression and consolidation tests was conducted on the untreated and PS treated soil samples. The application of PS to the soil significantly changed its properties by reducing its plasticity and making it more workable, improving its soaked strength, and increasing its permeability and the rate at which the soil gets consolidated. An optimal PS content of 50%, which provided the highest soaked strength, is recommended for the improvement of the subgrade characteristics of the BC soil for use as a pavement layer material. 展开更多
关键词 black cotton soil expansive soil precipitated silica rice husk ash soil stabilization
下载PDF
Sustainability of lime stabilized road subgrade in mountainous regions of Türkiye
16
作者 Yavuz ABUT İlknur BOZBEY Ece KURT BAL 《Journal of Mountain Science》 SCIE CSCD 2023年第8期2436-2452,共17页
In this paper the use of lime stabilized subgrade for low volume roads in two regions with high mountains and different frost penetration conditions in Türkiye was investigated in terms of design,performance,and ... In this paper the use of lime stabilized subgrade for low volume roads in two regions with high mountains and different frost penetration conditions in Türkiye was investigated in terms of design,performance,and cost.Pavements on unstabilized and stabilized subgrade were designed for two regions(Izmir and Van),covering all climate variations.The resilient modulus of the lime stabilized subgrade with different soil pulverization levels for non-freezing and freezing conditions were taken from a previous laboratory study.Frost effects were considered in pavement design using two different approaches,including limited subgrade frost penetration method and reduced subgrade strength method.Detailed application and evaluation were performed for all steps.Lime stabilized subgrades significantly reduced the thickness of base courses,and the benefit of lime stabilization was highly dependent on soil pulverization level.A detailed cost analysis on the unstabilized and stabilized cases found that the use of lime stabilization in the subgrade provided significant initial cost savings.Comparative analysis by using the AASHTO(1993)method and KENPAVE software,and quantity effect of soil pulverization level on the performance of low volume roads from a service life perspective,show that subgrade resilient modulus can be estimated.It is also possible to make correct performance estimation in the field.The results of the study show that lime stabilization is a good solution for low volume roads in the mountainous regions of Türkiye. 展开更多
关键词 Aggregate Surfaced Roads Lime stabilization soil Pulverization Levels Road Design Service Life Cost analyses
下载PDF
Effect of cyclic drying and wetting on engineering properties of heavy metal contaminated soils solidified/stabilized with fly ash 被引量:3
17
作者 ZHA Fu-sheng LIU Jing-jing +1 位作者 XU Long CUI Ke-rui 《Journal of Central South University》 SCIE EI CAS 2013年第7期1947-1952,共6页
Solidification/stabilization (S/S) is one of the most effective methods of dealing with heavy metal contaminated soils. The effects of cyclic wetting and drying on solidified/stabilized contaminated soils were inves... Solidification/stabilization (S/S) is one of the most effective methods of dealing with heavy metal contaminated soils. The effects of cyclic wetting and drying on solidified/stabilized contaminated soils were investigated. A series of test program, unconfined compressive strength (UCS) test, TCLP leaching test and scanning electron microscopy (SEM) test, were performed on lead and zinc contaminated soils solidified/stabilized by fly ash. Test results show that UCS and the leaching characteristics of heavy metal ions of S/S contaminated soils are significantly improved with the increase of fly ash content. UCS of S/S soils firstly increases with the increase of the times of drying and wetting cycles, after reaching the peak, it decreases with it. When the pollutant content is lower (1 000 mg/kg), the TCLP concentration first slightly decreases under cyclic drying and wetting, then increases, but the change is minor. The TCLP concentration is higher under a high pollutant content of 5 000 mg/kg, and increases with the increase of the times of drying and wetting cycles. The results of scanning electron microscopy (SEM) test are consistent with UCS tests and TCLP leaching tests, which reveals the micro-mechanism of the variations of engineering properties of stabilized contaminated soils after drying and wetting cycles. 展开更多
关键词 solidification/stabilization (S/S) heavy metal contaminated soil drying and wetting cycles long-term stability
下载PDF
Effect of adding natural pozzolana on geotechnical properties of lime-stabilized clayey soil 被引量:4
18
作者 Aref al-Swaidani Ibrahim Hammoud Ayman Meziab 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第5期714-725,共12页
Clayey soils in Syria cover a total area of more than 20,000 km2 of the country, most of which are located in the southwestern region. In many places of the country, the clayey soils caused severe damage to infrastruc... Clayey soils in Syria cover a total area of more than 20,000 km2 of the country, most of which are located in the southwestern region. In many places of the country, the clayey soils caused severe damage to infrastructures. Extensive studies have been carried out on the stabilization of clayey soils using lime. Syria is rich in both lime and natural pozzolana. However, few works have been conducted to investigate the influence of adding natural pozzolana on the geotechnical properties of lime-treated clayey soils. The aim of this paper is to understand the effect of adding natural pozzolana on some geotechnical properties of lime-stabilized clayey soils. Natural pozzolana and lime are added to soil within the range of 0%–20% and 0%–8%, respectively. Consistency, compaction, California bearing ratio (CBR) and linear shrinkage properties are particularly investigated. The test results show that the investigated properties of lime-treated clayey soils can be considerably enhanced when the natural pozzolana is added as a stabilizing agent. Analysis results of scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) show significant changes in the microstructure of the treated clayey soil. A better flocculation of clayey particles and further formation of cementing materials in the natural pozzolana-lime-treated clayey soil are clearly observed. 展开更多
关键词 Natural pozzolana Clayey soil stabilization CompactionCalifornia bearing ratio (CBR) Linear shrinkage
下载PDF
Preliminary Study on the Effect of Different Ecological Cultivation Modes on the Water Stability of Soil Aggregates in Rubber Based Agroforestry Systems
19
作者 Shiyun Zhan Fengyue Qin +4 位作者 Dongling Qi Zhixiang Wu Chuan Yang Yingying Zhang Qingmao Fu 《Open Journal of Ecology》 2023年第11期782-793,共12页
Rubber trees (Hevea brasiliensis Müll. Arg.) have been commercially cultivated for a century and a half in Asia, particularly in China, and they constitute a common element of plantation ecosystems in tropical re... Rubber trees (Hevea brasiliensis Müll. Arg.) have been commercially cultivated for a century and a half in Asia, particularly in China, and they constitute a common element of plantation ecosystems in tropical regions. Soil health is fundamental to the sustainable development of rubber plantations. The objective of the study is to explore the influence of different complex ecological cultivation modes on the stability of soil aggregates in rubber based agroforestry systems. In this study, the ecological cultivation mode of rubber—Alpinia oxyphylla plantation, the ecological cultivation mode of rubber—Phrynium hainanense plantations, the ecological cultivation mode of rubber—Homalium ceylanicum plantations and monoculture rubber plantations were selected, and the particle size distribution of soil aggregates and their water stability characteristics were analyzed. The soil depth of 0 - 20 cm and 20 - 40 cm was collected for four cultivation modes. Soil was divided into 6 particle levels > 20 cm. soil was divided into 6 particle levels > 5 mm, 2 - 5 mm, 1 - 2 mm, 0.5 - 1 mm, 0.25 - 0.5 mm, and 0.053 - 0.25 mm according to the wet sieve method. The particle size proportion and water stability of soil aggregates were determined by the wet sieve method. The particle size proportion and water stability of soil aggregates under different ecological cultivation modes were analyzed. The results showed that under different ecological cultivation modes in the shallow soil layer (0 - 20 cm), the rubber—Alpinia oxyphylla plantation and the rubber—Phrynium hainanense plantation promoted the development of dominant soil aggregates towards larger size classes, whereas the situation is the opposite for rubber—Homalium ceylanicum plantation. In soil layer (20 - 40 cm), the ecological cultivation mode of rubber—Phrynium hainanense plantation developed the dominant radial level of soil aggregates to the diameter level of large aggregates. Rubber—Alpinia oxyphylla plantation and rubber—Homalium ceylanicum plantation, three indicators, including the water-stable aggregate content R<sub>0.25</sub> (>0.25 mm water-stable aggregates), mean weight diameter (MWD), and geometric mean diameter (GMD), were all lower than those in the rubber monoculture mode. However, in the rubber—Phrynium hainanense plantation, the water-stable aggregate content R<sub>0.25</sub>, mean weight diameter, and geometric mean diameter were higher than in the rubber monoculture mode, although these differences did not reach statistical significance. 展开更多
关键词 Ecological Complex Cultivation Rubber Plantation soil Aggregates soil Aggregate Water stability Rubber Based Agroforestry Systems
下载PDF
Analysis of influence factors of unconfined compressive strength for composite soil stabilizer-stabilized gravel soil 被引量:1
20
作者 Zhao Yulong Gao Ying +1 位作者 Zhang Yiluo Wang Yong 《Journal of Southeast University(English Edition)》 EI CAS 2017年第4期484-489,共6页
In order to investigate the effect o f some factors on the unconfined compressive strength(UCS)for composite soil stabilizer-stabilized gravel soil(CSSSGS),the orthogonal test is adopted to set up the experimental sch... In order to investigate the effect o f some factors on the unconfined compressive strength(UCS)for composite soil stabilizer-stabilized gravel soil(CSSSGS),the orthogonal test is adopted to set up the experimental scheme.Three levels o f each factor armconsidered to obtain the change laws o f UCS,in which the binder dosages are8%,10%,and12%;the curing times ae7,14and21d;the gradation nae0.3,0.35and0.4;and the degrees of compaction are95%,97%,and99%.The range analysis clearly indicates that the influence degree o f the four factors on UCS is in such an order:dosage,age,gradation,and degree o f compaction.The variance analysis shows that only the composite soil stabilizer dosage can significantly affect UCS.In road construction,the examination o f composite soil stabilizer dosage and base-course maintenance should be given much more attention to obtain satisfactory base-course strength,compared w ith gradation floating and the change of degree o f compaction. 展开更多
关键词 base course composite soil stabilizer gravel soil unconfined compressive strength orthogonal test
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部