Problematic soils usually cause considerable problems to engineering projects. As an example, soil structure collapse caused by moisture increment or rising underground water level results in huge settlements. This ty...Problematic soils usually cause considerable problems to engineering projects. As an example, soil structure collapse caused by moisture increment or rising underground water level results in huge settlements. This type of problematic soil, named collapsible soil, can cause dramatic problems and should be amended where exists. Today, the use of different techniques for soil reinforcement and soil improvement is widely used to treat soil properties. One of these methods is Deep Soil Mixing (DSM) method. This method becomes more important in the cases of studying and examining collapsible soils. In this research, the settlement of amended collapsible soils, applying deep soil mixing method, is examined. The experiments show that soil amendment using this method, well prevents the settlement of collapsible soils giving rise to bearing capacity.展开更多
A series of investigations were conducted to study the bearing capacity and load transfer mechanism of stiffened deep cement mixed (SDCM) pile. Laboratory tests including six specimens were conducted to investigate ...A series of investigations were conducted to study the bearing capacity and load transfer mechanism of stiffened deep cement mixed (SDCM) pile. Laboratory tests including six specimens were conducted to investigate the frictional resistance between the concrete core and the cementsoil. Two model piles and twenty-four full-scale piles were tested to examine the bearing behavior of single pile. Laboratory and model tests results indicate that the cohesive strength is large enough to ensure the interaction between core pile and the outer cement-soil. The full-scale test results show that the SDCM piles exhibit similar bearing behavior to bored and cast-in-place concrete piles. In general, with the rational composite structure the SDCM piles can transmit the applied load effectively, and due to the addition of the stiffer core, the SDCM piles possess high bearing capacity. Based on the findings of these experimental investigations and theoretical analysi , a practical design method is developed to predict the vertical bearing capacity of SDCM pile.展开更多
采用模型试验方法,对多层互剪搅拌桩工法(contra-rotational shear deep soil mixing,简称CS-DSM工法)的工艺因素进行了试验研究,探索了水泥掺量、单位桩长搅拌次数T、单位体积搅拌能量E以及内外钻杆转速比RN等工艺因素对搅拌桩均匀性...采用模型试验方法,对多层互剪搅拌桩工法(contra-rotational shear deep soil mixing,简称CS-DSM工法)的工艺因素进行了试验研究,探索了水泥掺量、单位桩长搅拌次数T、单位体积搅拌能量E以及内外钻杆转速比RN等工艺因素对搅拌桩均匀性与强度UCS的影响。模型试验研究发现,通过多层互剪搅拌能够根除地表冒浆、防止糊钻抱钻、提高固化材料利用率。18组模型试验结果阐明搅拌桩在T-E-UCS之间存在固有关联,并揭示出机械参数、输出能量与桩身强度之间的本质关系。提供的计算方法可以定性指导选取合理的工艺参数,实现桩身设计强度目标。作为重要工艺因素,内外钻杆转速比RN与桩身强度试验曲线存在极值点,建议在工程中将1.80~2.20作为获取桩身峰值强度的最优RN值域。CS-DSM工法应用的系列研究结果为高质量搅拌桩工艺控制原则和质量保障体系提供了试验依据。展开更多
文摘Problematic soils usually cause considerable problems to engineering projects. As an example, soil structure collapse caused by moisture increment or rising underground water level results in huge settlements. This type of problematic soil, named collapsible soil, can cause dramatic problems and should be amended where exists. Today, the use of different techniques for soil reinforcement and soil improvement is widely used to treat soil properties. One of these methods is Deep Soil Mixing (DSM) method. This method becomes more important in the cases of studying and examining collapsible soils. In this research, the settlement of amended collapsible soils, applying deep soil mixing method, is examined. The experiments show that soil amendment using this method, well prevents the settlement of collapsible soils giving rise to bearing capacity.
文摘A series of investigations were conducted to study the bearing capacity and load transfer mechanism of stiffened deep cement mixed (SDCM) pile. Laboratory tests including six specimens were conducted to investigate the frictional resistance between the concrete core and the cementsoil. Two model piles and twenty-four full-scale piles were tested to examine the bearing behavior of single pile. Laboratory and model tests results indicate that the cohesive strength is large enough to ensure the interaction between core pile and the outer cement-soil. The full-scale test results show that the SDCM piles exhibit similar bearing behavior to bored and cast-in-place concrete piles. In general, with the rational composite structure the SDCM piles can transmit the applied load effectively, and due to the addition of the stiffer core, the SDCM piles possess high bearing capacity. Based on the findings of these experimental investigations and theoretical analysi , a practical design method is developed to predict the vertical bearing capacity of SDCM pile.
文摘采用模型试验方法,对多层互剪搅拌桩工法(contra-rotational shear deep soil mixing,简称CS-DSM工法)的工艺因素进行了试验研究,探索了水泥掺量、单位桩长搅拌次数T、单位体积搅拌能量E以及内外钻杆转速比RN等工艺因素对搅拌桩均匀性与强度UCS的影响。模型试验研究发现,通过多层互剪搅拌能够根除地表冒浆、防止糊钻抱钻、提高固化材料利用率。18组模型试验结果阐明搅拌桩在T-E-UCS之间存在固有关联,并揭示出机械参数、输出能量与桩身强度之间的本质关系。提供的计算方法可以定性指导选取合理的工艺参数,实现桩身设计强度目标。作为重要工艺因素,内外钻杆转速比RN与桩身强度试验曲线存在极值点,建议在工程中将1.80~2.20作为获取桩身峰值强度的最优RN值域。CS-DSM工法应用的系列研究结果为高质量搅拌桩工艺控制原则和质量保障体系提供了试验依据。