The influence of curing temperature on the strength development of cement-stabilized mud has been well documented in terms of strength-increase rate and ultimate strength.However,the strength development model is not ...The influence of curing temperature on the strength development of cement-stabilized mud has been well documented in terms of strength-increase rate and ultimate strength.However,the strength development model is not mature for the extremely early stages.In addition,there is a lack of studies on quality control methods based on early-stage strength development.This paper presents a strength model for cement-stabilized mud to address these gaps,considering various curing temperatures and early-stage behaviors.In this study,a series of laboratory experiments was conducted on two types of muds treated with Portland blast furnace cement and ordinary Portland cement under four different temperatures.The results indicate that elevated temperatures expedite strength development and lead to higher long-term strength.The proposed model,which combines a three-step conversion process and a hyperbolic model at the reference temperature,enables accurate estimate of the strength development for cement-treated mud with any proportions cured under various temperatures.With this model,a practical early quality control method is introduced for applying cement-stabilized mud in field projects.The back-analysis parameters obtained from a 36-h investigation at temperature of 60C demonstrated a sufficient accuracy in predicting strength levels in practical applications.展开更多
The cement dry jet mixing method has been used to reinforce soft cohesive ground to increase the strength of soft cohesive ground and to decrease its deformation. The study briefly introduces the curing mechanism of c...The cement dry jet mixing method has been used to reinforce soft cohesive ground to increase the strength of soft cohesive ground and to decrease its deformation. The study briefly introduces the curing mechanism of cement-soil,presents the factors of influencing on compressive strength,mainly analyses the factors including cement mixing ratio,cement strength grade,curing age,moisture content and soil texture and puts forward some rational proposals at last.展开更多
The base layer constructed by cement-stabilized macadam(CSM)has been widely used in highway construction due to its low elasticity deformation and high carrying capacity.As a bearing layer,the CSM base is not exempt f...The base layer constructed by cement-stabilized macadam(CSM)has been widely used in highway construction due to its low elasticity deformation and high carrying capacity.As a bearing layer,the CSM base is not exempt from fatigue cracking under cyclic loading in the service process.Cracks in the base will create irreversible structural and functional deficiencies,such as the potential for reflective cracking of subsequently placed asphalt concrete overlays.The fracture of the base will shorten the service life of the pavement.The quality of the CSM base is directly related to the bearing capacity and integrity of the whole pavement structure.It is of practical significance to further study the fatigue failure behavior of CSM material for the long-term performance of the pavement.The CSM material is a typical heterogeneous multiphase composite.On the mesoscale,CSM consists of aggregate,cement mortar,pores,and the interface transitional zone(ITZ).On the microscale,the hardened mortar contains a large number of capillary pores,unhydrated particles,hydrated crystals,etc.,which makes the spatial distribution of its material properties stochastic.In addition,cement hydration,dry shrinkage,and temperature shrinkage can also produce micro-crack defects in cement mortar.These microcracks will have crossscale evolution under load,resulting in structural fracture.Macroscopic complex deformation and mechanical response are the reflections of its microscopic and even mesoscale composition and structure.This study summarized the existing studies on the mesoscopic properties of CSM materials,respectively from the three aspects of mesostructure,structural characterization,and mesoscale fatigue damage analysis,to help the development of long-life pavement.The future research direction is to explore the mesoscale characteristics of CSM using multiscale representation and analysis methods,to establish the connection between mesoscale characteristics and macroscopic mechanical properties.展开更多
The Moon,as the closest celestial body to the Earth,plays a pivotal role in the progression of deep space exploration,and the establishment of research outposts on its surface represents a crucial step in this mission...The Moon,as the closest celestial body to the Earth,plays a pivotal role in the progression of deep space exploration,and the establishment of research outposts on its surface represents a crucial step in this mission.Lunar lava tubes are special underground caves formed by volcanic eruptions and are considered as ideal natural shelters and scientific laboratories for lunar base construction.This paper begins with an in-depth overview of the geological origins,exploration history,and distribution locations of lunar lava tubes.Subsequently,it delves into the presentation of four distinctive advantages and typical concepts for constructing bases within lava tubes,summarizing the ground-based attempts made thus far in lunar lava tube base construction.Field studies conducted on a lava tube in Hainan revealed rock compositions similar to those found during the Apollo missions and clear lava tube structures,making it a promising analog site.Lastly,the challenges and opportunities encountered in the field of geotechnical engineering regarding the establishment of lunar lava tube bases are discussed,encompassing cave exploration technologies,in-situ testing methods,geomechanical properties under lunar extreme environments,base design and structural stability assessment,excavation and reinforcement techniques,and simulated Earth-based lava tube base.展开更多
BACKGROUND Traumatic internal carotid artery(ICA)occlusion is a rare complication of skull base fractures,characterized by high mortality and disability rates,and poor prognosis.Therefore,timely discovery and correct ...BACKGROUND Traumatic internal carotid artery(ICA)occlusion is a rare complication of skull base fractures,characterized by high mortality and disability rates,and poor prognosis.Therefore,timely discovery and correct management are crucial for saving the lives of such patients and improving their prognosis.This article retrospectively analyzed the imaging and clinical data of three patients,to explore the imaging characteristics and treatment strategies for carotid artery occlusion,combined with severe skull base fractures.CASE SUMMARY This case included three patients,all male,aged 21,63,and 16 years.They underwent plain film skull computed tomography(CT)examination at the onset of their illnesses,which revealed fractures at the bases of their skulls.Ultimately,these cases were definitively diagnosed through CT angiography(CTA)examinations.The first patient did not receive surgical treatment,only anticoagulation therapy,and recovered smoothly with no residual limb dysfunction(Case 1).The other two patients both developed intracranial hypertension and underwent decompressive craniectomy.One of these patients had high intracranial pressure and significant brain swelling postoperatively,leading the family to choose to take him home(Case 2).The other patient also underwent decompressive craniectomy and recovered well postoperatively with only mild limb motor dysfunction(Case 3).We retrieved literature from PubMed on skull base fractures causing ICA occlusion to determine the imaging characteristics and treatment strategies for this type of disease.CONCLUSION For patients with cranial trauma combined with skull base fractures,it is essential to complete a CTA examination as soon as possible,to screen for blunt cerebrovascular injury.展开更多
When better fuel-air mixing in the combustion chamber or a reduction in base drag are required in vehicles,rockets,and aeroplanes,the base pressure control is activated.Controlling the base pressure and drag is necess...When better fuel-air mixing in the combustion chamber or a reduction in base drag are required in vehicles,rockets,and aeroplanes,the base pressure control is activated.Controlling the base pressure and drag is necessary in both scenarios.In this work,semi-circular ribs with varying diameters(2,4,and 6 mm)positioned at six distinct positions(0.5D,1D,1.5D,2D,3D,and 4D)inside a square duct with a side of 15 mm are proposed as an efficient way to apply the passive control technique.In-depth research is done on optimising rib size for various rib sites.According to this study,the base pressure rises as rib height increases.Furthermore,the optimal location for the semi-circular ribs with a diameter of 2 mm is at 0.5D.The 1D location appears to be optimal for the 4 mm size as well.For the 6 mm size,however,the 4D position fills this function.展开更多
This study endeavors to formulate a comprehensive methodology for establishing a Geological Knowledge Base(GKB)tailored to fracture-cavity reservoir outcrops within the North Tarim Basin.The acquisition of quantitativ...This study endeavors to formulate a comprehensive methodology for establishing a Geological Knowledge Base(GKB)tailored to fracture-cavity reservoir outcrops within the North Tarim Basin.The acquisition of quantitative geological parameters was accomplished through diverse means such as outcrop observations,thin section studies,unmanned aerial vehicle scanning,and high-resolution cameras.Subsequently,a three-dimensional digital outcrop model was generated,and the parameters were standardized.An assessment of traditional geological knowledge was conducted to delineate the knowledge framework,content,and system of the GKB.The basic parameter knowledge was extracted using multiscale fine characterization techniques,including core statistics,field observations,and microscopic thin section analysis.Key mechanism knowledge was identified by integrating trace elements from filling,isotope geochemical tests,and water-rock simulation experiments.Significant representational knowledge was then extracted by employing various methods such as multiple linear regression,neural network technology,and discriminant classification.Subsequently,an analogy study was performed on the karst fracture-cavity system(KFCS)in both outcrop and underground reservoir settings.The results underscored several key findings:(1)Utilization of a diverse range of techniques,including outcrop observations,core statistics,unmanned aerial vehicle scanning,high-resolution cameras,thin section analysis,and electron scanning imaging,enabled the acquisition and standardization of data.This facilitated effective management and integration of geological parameter data from multiple sources and scales.(2)The GKB for fracture-cavity reservoir outcrops,encompassing basic parameter knowledge,key mechanism knowledge,and significant representational knowledge,provides robust data support and systematic geological insights for the intricate and in-depth examination of the genetic mechanisms of fracture-cavity reservoirs.(3)The developmental characteristics of fracturecavities in karst outcrops offer effective,efficient,and accurate guidance for fracture-cavity research in underground karst reservoirs.The outlined construction method of the outcrop geological knowledge base is applicable to various fracture-cavity reservoirs in different layers and regions worldwide.展开更多
Neodymium(Nd)-based catalyst in butadiene(Bd)polymerization has drawn interests due to its availability in affording higher cis-1,4-unit selectivity than transition metal(Ti,Co,Ni,etc.)-based catalysts[1-2].Such outst...Neodymium(Nd)-based catalyst in butadiene(Bd)polymerization has drawn interests due to its availability in affording higher cis-1,4-unit selectivity than transition metal(Ti,Co,Ni,etc.)-based catalysts[1-2].Such outstanding high cis-1,4-unit selecti-vity is hypothetically originated from the presence of 4 f orbitals,that can participate in monomer coordination and thereby govern subsequent enchainment manners.This unique characteristic also renders the active species highly susceptible to Lewis bases,and may impact the overall selectivity as well as polyme-rization behavior after coordination.Nevertheless,it is still a virgin area in such a field,and the influence of Lewis bases on Nd-based diene polymerizations is still a black box.Based on this consideration,how nitrogen-containing donors(D)impacts the overall behaviors of Nd-mediated Bd polymerizations is disclosed.展开更多
Purpose: The study investigated the impact of dietary habits, specifically soda, milk kefir, water kefir, almond milk, and distilled water (control) consumption, on the microhardness of gingiva-coloured composite and ...Purpose: The study investigated the impact of dietary habits, specifically soda, milk kefir, water kefir, almond milk, and distilled water (control) consumption, on the microhardness of gingiva-coloured composite and acrylic denture bases. Methods: Materials included gingiva-coloured composite (Fusion Universal G1), acrylic (Imicryl), and subdivided Procryla group. Subgroups comprised 15 and 30-minute heat polymerized (Pro15, Pro30), and 1 wt% (Pro1Z) and 3 wt% (Pro3Z) zirconium added groups. Immersed in beverages for 1, 7, and 14 days, pH and microhardness were assessed. SEM examined random samples. Statistical analysis used repeated measures ANOVA, and post hoc tests (p Results: The gingiva-coloured composites displayed noteworthy time-associated microhardness changes (p 0.05). Despite variable pH levels in beverages, no substantial group interaction effects were observed (p > 0.05). Initial microhardness rankings shifted after a 14-day immersion. Conclusions: Gingiva-coloured composite exhibited the highest microhardness pre- and post-immersion, followed by Procryla30 and Imicryl groups. .展开更多
Location awareness in wireless networks is essential for emergency services,navigation,gaming,and many other applications.This article presents a method for source localization based on measuring the amplitude-phase d...Location awareness in wireless networks is essential for emergency services,navigation,gaming,and many other applications.This article presents a method for source localization based on measuring the amplitude-phase distribution of the field at the base station.The existing scatterers in the target area create unique scattered field interference at each source location.The unique field interference at each source location results in a unique field signature at the base station which is used for source localization.In the proposed method,the target area is divided into a grid with a step of less than half the wavelength.Each grid node is characterized by its field signature at the base station.Field signatures corresponding to all nodes are normalized and stored in the base station as fingerprints for source localization.The normalization of the field signatures avoids the need for time synchronization between the base station and the source.When a source transmits signals,the generated field signature at the base station is normalized and then correlated with the stored fingerprints.The maximum correlation value is given by the node to which the source is the closest.Numerical simulations and results of experiments on ultrasonic waves in the air show that the ultrasonic source is correctly localized using broadband field signatures with one base station and without time synchronization.The proposed method is potentially applicable for indoor localization and navigation of mobile robots.展开更多
Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures.The base isolators may lose their damping capacity over time due to environmental or dynamic effe...Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures.The base isolators may lose their damping capacity over time due to environmental or dynamic effects.This deterioration of them requires the determination of the maintenance and repair needs and is important for the long-termisolator life.In this study,an artificial intelligence prediction model has been developed to determine the damage and maintenance-repair requirements of isolators as a result of environmental effects and dynamic factors over time.With the developed model,the required damping capacity of the isolator structure was estimated and compared with the previously placed isolator capacity,and the decrease in the damping property was tried to be determined.For this purpose,a data set was created by collecting the behavior of structures with single degrees of freedom(SDOF),different stiffness,damping ratio and natural period isolated from the foundation under far fault earthquakes.The data is divided into 5 different damping classes varying between 10%and 50%.Machine learning model was trained in damping classes with the data on the structure’s response to random seismic vibrations.As a result of the isolator behavior under randomly selected earthquakes,the recorded motion and structural acceleration of the structure against any seismic vibration were examined,and the decrease in the damping capacity was estimated on a class basis.The performance loss of the isolators,which are separated according to their damping properties,has been tried to be determined,and the reductions in the amounts to be taken into account have been determined by class.In the developed prediction model,using various supervised machine learning classification algorithms,the classification algorithm providing the highest precision for the model has been decided.When the results are examined,it has been determined that the damping of the isolator structure with the machine learning method is predicted successfully at a level exceeding 96%,and it is an effective method in deciding whether there is a decrease in the damping capacity.展开更多
The serious environmental threat caused by petroleum-based plastics has spurred more researches in developing substitutes from renewable sources.Starch is desirable for fabricating bioplastic due to its abundance and ...The serious environmental threat caused by petroleum-based plastics has spurred more researches in developing substitutes from renewable sources.Starch is desirable for fabricating bioplastic due to its abundance and renewable nature.However,limitations such as brittleness,hydrophilicity,and thermal properties restrict its widespread application.To overcome these issues,covalent adaptable network was constructed to fabricate a fully bio-based starch plastic with multiple advantages via Schiff base reactions.This strategy endowed starch plastic with excellent thermal processability,as evidenced by a low glass transition temperature(T_(g)=20.15℃).Through introducing Priamine with long carbon chains,the starch plastic demonstrated superior flexibility(elongation at break=45.2%)and waterproof capability(water contact angle=109.2°).Besides,it possessed a good thermal stability and self-adaptability,as well as solvent resistance and chemical degradability.This work provides a promising method to fabricate fully bio-based plastics as alternative to petroleum-based plastics.展开更多
We study the construction of mutually unbiased bases in Hilbert space for composite dimensions d which are not prime powers.We explore the results for composite dimensions which are true for prime power dimensions.We ...We study the construction of mutually unbiased bases in Hilbert space for composite dimensions d which are not prime powers.We explore the results for composite dimensions which are true for prime power dimensions.We then provide a method for selecting mutually unbiased vectors from the eigenvectors of generalized Pauli matrices to construct mutually unbiased bases.In particular,we present four mutually unbiased bases in C^(15).展开更多
Solid strong base catalysts are highly attractive for diverse reactions owing to their advantages of neglectable corrosion,facile separation,and environmental friendliness.However,their widespread applications are imp...Solid strong base catalysts are highly attractive for diverse reactions owing to their advantages of neglectable corrosion,facile separation,and environmental friendliness.However,their widespread applications are impeded by basic components aggregation and low stability.In this work,we fabricate single calcium atoms on graphene(denoted as Ca1/G)by use of a redox strategy for the first time,producing solid strong base catalyst with high activity and stability.The precursor Ca(NO_(3))_(2)is first reduced to CaO at 400℃ by the support graphene,forming CaO/G with conventional basic sites,and the subsequent reduction at 850℃results in the generation of Ca1/G with atomically dispersed Ca.Various characterizations reveal that Ca single atoms are anchored on graphene in tetra-coordination(Ca-C_(2)-N_(2))where N is in situ doped from Ca(NO_(3))_(2).The atomically dispersed Ca,along with their anchoring on the support,endow Ca1/G with high activity and stability toward the transesterification reaction of ethylene carbonate with methanol.The turnover frequency value reaches 128.0 h^(-1)on Ca1/G,which is much higher than the traditional counterpart CaO/G and various reported solid strong bases(2.9-46.2 h^(-1)).Moreover,the activity of Ca1/G is well maintained during 5 cycles,while 60%of activity is lost for the conventional analogue CaO/G due to the leaching of Ca.展开更多
The influence of micro-Ca/In alloying on the microstructural charac teristics,electrochemical behaviors and discharge properties of extruded dilute Mg-0.5Bi-0.5Sn-based(wt.%)alloys as anodes for Mg-air batteries are e...The influence of micro-Ca/In alloying on the microstructural charac teristics,electrochemical behaviors and discharge properties of extruded dilute Mg-0.5Bi-0.5Sn-based(wt.%)alloys as anodes for Mg-air batteries are evaluated.The grain size and texture intensity of the Mg-Bi-Sn-based alloys are significantly decreased after the Ca/In alloying,particularly for the In-containing alloy.Note that,in addition to nanoscale Mg_(3)Bi_(2)phase,a new microscale Mg_(2)Bi_(2)Ca phase forms in the Ca-containing alloy.The electrochemical test results demonstrate that Ca/In micro-alloying can enhance the electrochemical activity.Using In to alloy the Mg-Bi-Sn-based alloy is effective in restricting the cathodic hydrogen evolution(CHE)kinetics,leading to a low self-corrosion rate,while severe CHE occurred after Ca alloying.The micro-alloying of Ca/In to Mg-Bi-Sn-based alloy strongly deteriorates the compactness of discharge products film and mitigates the"chunk effect"(CE),hence the cell voltage,anodic efficiency as well as discharge capacity are greatly improved.The In-containing alloy exhibits outstanding discharge performance under the combined effect of the modified microstructure and discharge products,thus making it a potential anode material for primary Mg-air battery.展开更多
Humic acids(HAs)are widely used as filtrate and viscosity reducers in drilling fluids.However,their practical utility is limited due to poor stability in salt resistance and high-temperature resistance.Hightemperature...Humic acids(HAs)are widely used as filtrate and viscosity reducers in drilling fluids.However,their practical utility is limited due to poor stability in salt resistance and high-temperature resistance.Hightemperature coal pitch(CP)is a by-product from coal pyrolysis above 650℃.The substance's molecular structure is characterized by a dense arrangement of aromatic hydrocarbon and alkyl substituents.This unique structure gives it unique chemical properties and excellent drilling performance,surpassing traditional humic acids in drilling operations.Potassium humate is prepared from CP(CP-HA-K)by thermal catalysis.A new type of high-quality humic acid temperature-resistant viscosity-reducer(Graft CP-HA-K polymer)is synthesized with CP-HA-K,hydrolyzed polyacrylonitrile sodium salt(Na-HPAN),urea,formaldehyde,phenol and acrylamide(AAM)as raw materials.The experimental results demonstrate that the most favorable conditions for the catalytic preparation of CP-HA-K are 1 wt%catalyst dosage,30 wt%KOH dosage,a reaction temperature of 250℃,and a reaction time of 2 h,resulting in a maximum yield of CP-HA-K of 39.58%.The temperature resistance of the Graft CP-HA-K polymer is measured to be 177.39℃,which is 55.39℃ higher than that of commercial HA-K.This is due to the abundant presence of amide,hydroxyl,and amine functional groups in the Graft CP-HA-K polymer,which increase the length of the carbon chains,enhance the electrostatic repulsion on the surface of solid particles.After being aged to 120℃ for a specified duration,the Graft CP-HA-K polymer demonstrates significantly higher viscosity reduction(42.12%)compared to commercial HA-K(C-HA-K).Furthermore,the Graft CP-HA-K polymer can tolerate a high salt concentration of 8000 mg.L-1,measured after the addition of optimum amount of 3 wt%Graft CP-HA-K polymer.The action mechanism of Graft CP-HA-K polymer on high-temperature drilling fluid is that the Graft CP-HA-K polymer can increase the repulsive force between solid particles and disrupt bentonite's reticulation structure.Overall,this research provides novelty insights into the synthesis of artificial humic acid materials and the development of temperature-resistant viscosity reducers,offering a new avenue for the utilization of CP resources.展开更多
Two new dinuclear lanthanidecomplexes,namely[Ln_(2)(dbm)_(2)(HL)_(2)(CH_(3)OH)_(2)]·4CH_(3)OH[Ln=Tb(1)and Dy(2),Hdbm=dibenzoylmethane]have been synthesized using prepared multidentate Schiff base ligand H_(3)L(hy...Two new dinuclear lanthanidecomplexes,namely[Ln_(2)(dbm)_(2)(HL)_(2)(CH_(3)OH)_(2)]·4CH_(3)OH[Ln=Tb(1)and Dy(2),Hdbm=dibenzoylmethane]have been synthesized using prepared multidentate Schiff base ligand H_(3)L(hydroxy‑acetic acid(4‑diethylamino‑2‑hydroxy‑benzylidene)‑hydrazide)with good biological activity.Structure characterizations show that the complex comprises two Ln3+ions,two dbm-ions,two HL^(2-)ligands,two CH_(3)OH molecules,and four free methanol molecules.Each Ln^(3+)ion is eight‑coordinated.The two central Lnions are bridged by twoμ_(2)‑O atoms leading to a parallelogram[Ln2O2]core.The interaction between the compounds(H_(3)L,1,and 2)and the calf thymus DNA(CT‑DNA)has been further confirmed by UV‑Vis spectrometry,fluorescence titration,and cyclic voltammetry.The results showed that both 1 and 2 could undergo insertion with CT‑DNA.CCDC:2343005,1;2343006,2.展开更多
In this study,the regenerative effects of different regenerants on aged SBS-modified asphalt from different perspectives were investigated,including their conventional properties,viscoelastic behavior,creep-related pr...In this study,the regenerative effects of different regenerants on aged SBS-modified asphalt from different perspectives were investigated,including their conventional properties,viscoelastic behavior,creep-related properties,and micromorphology.Base oils composed of different proportions of aromatic and saturated hydrocarbons as well as the styrene-butadiene-styrene(SBS)restorer were used to prepare the regenerants.The results showed that the components of the base oil of the regenerant played a crucial role in determining the characteristics and performance of the recycled SBSmodified asphalt.Regenerants containing a high proportion of aromatics dissolved the hard segment in the SBS restorer,thereby delaying the effect of a reduction in the regenerants on the performance of the aged asphalts at a high temperature.Regenerants containing a high proportion of saturates dissolved the soft segment in the SBS restorer to enhance the lowtemperature performance of the recycled asphalts.In addition,the stress sensitivity of the recycled asphalts increased with the fraction of aromatics in the regenerant.As the aromatic content of the base oil components of the regenerants increased and their saturate content decreased,the state of dispersion of the SBS phase in the recycled SBS-modified asphalts improved.The optimal content of aromatics in the base oil of the regenerants should be set in the range of 33%to 47%to ensure the adequate performance of the recycled asphalts and a high efficiency of the SBS restorer.展开更多
The composition of base oils affects the performance of lubricants made from them.This paper proposes a hybrid model based on gradient-boosted decision tree(GBDT)to analyze the effect of different ratios of KN4010,PAO...The composition of base oils affects the performance of lubricants made from them.This paper proposes a hybrid model based on gradient-boosted decision tree(GBDT)to analyze the effect of different ratios of KN4010,PAO40,and PriEco3000 component in a composite base oil system on the performance of lubricants.The study was conducted under small laboratory sample conditions,and a data expansion method using the Gaussian Copula function was proposed to improve the prediction ability of the hybrid model.The study also compared four optimization algorithms,sticky mushroom algorithm(SMA),genetic algorithm(GA),whale optimization algorithm(WOA),and seagull optimization algorithm(SOA),to predict the kinematic viscosity at 40℃,kinematic viscosity at 100℃,viscosity index,and oxidation induction time performance of the lubricant.The results showed that the Gaussian Copula function data expansion method improved the prediction ability of the hybrid model in the case of small samples.The SOA-GBDT hybrid model had the fastest convergence speed for the samples and the best prediction effect,with determination coefficients(R^(2))for the four indicators of lubricants reaching 0.98,0.99,0.96 and 0.96,respectively.Thus,this model can significantly reduce the model’s prediction error and has good prediction ability.展开更多
Cloud base height(CBH) is a crucial parameter for cloud radiative effect estimates, climate change simulations, and aviation guidance. However, due to the limited information on cloud vertical structures included in p...Cloud base height(CBH) is a crucial parameter for cloud radiative effect estimates, climate change simulations, and aviation guidance. However, due to the limited information on cloud vertical structures included in passive satellite radiometer observations, few operational satellite CBH products are currently available. This study presents a new method for retrieving CBH from satellite radiometers. The method first uses the combined measurements of satellite radiometers and ground-based cloud radars to develop a lookup table(LUT) of effective cloud water content(ECWC), representing the vertically varying cloud water content. This LUT allows for the conversion of cloud water path to cloud geometric thickness(CGT), enabling the estimation of CBH as the difference between cloud top height and CGT. Detailed comparative analysis of CBH estimates from the state-of-the-art ECWC LUT are conducted against four ground-based millimeter-wave cloud radar(MMCR) measurements, and results show that the mean bias(correlation coefficient) is0.18±1.79 km(0.73), which is lower(higher) than 0.23±2.11 km(0.67) as derived from the combined measurements of satellite radiometers and satellite radar-lidar(i.e., Cloud Sat and CALIPSO). Furthermore, the percentages of the CBH biases within 250 m increase by 5% to 10%, which varies by location. This indicates that the CBH estimates from our algorithm are more consistent with ground-based MMCR measurements. Therefore, this algorithm shows great potential for further improvement of the CBH retrievals as ground-based MMCR are being increasingly included in global surface meteorological observing networks, and the improved CBH retrievals will contribute to better cloud radiative effect estimates.展开更多
基金supported by funding from the National Natural Science Foundation of China (Grant Nos.51978303 and 52208367)the Fundamental Research Funds for the Central Universities (Grant No.2042023kfyq03).
文摘The influence of curing temperature on the strength development of cement-stabilized mud has been well documented in terms of strength-increase rate and ultimate strength.However,the strength development model is not mature for the extremely early stages.In addition,there is a lack of studies on quality control methods based on early-stage strength development.This paper presents a strength model for cement-stabilized mud to address these gaps,considering various curing temperatures and early-stage behaviors.In this study,a series of laboratory experiments was conducted on two types of muds treated with Portland blast furnace cement and ordinary Portland cement under four different temperatures.The results indicate that elevated temperatures expedite strength development and lead to higher long-term strength.The proposed model,which combines a three-step conversion process and a hyperbolic model at the reference temperature,enables accurate estimate of the strength development for cement-treated mud with any proportions cured under various temperatures.With this model,a practical early quality control method is introduced for applying cement-stabilized mud in field projects.The back-analysis parameters obtained from a 36-h investigation at temperature of 60C demonstrated a sufficient accuracy in predicting strength levels in practical applications.
文摘The cement dry jet mixing method has been used to reinforce soft cohesive ground to increase the strength of soft cohesive ground and to decrease its deformation. The study briefly introduces the curing mechanism of cement-soil,presents the factors of influencing on compressive strength,mainly analyses the factors including cement mixing ratio,cement strength grade,curing age,moisture content and soil texture and puts forward some rational proposals at last.
基金sponsored by the projects found by the National Natural Science Foundation of China(NSFC)under Grant No.51978163 and Grant No.52208439the Natural Science Foundation of Jiangsu Province under Grant No.BK20200468+4 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province under Grant No.SJCX22_0063the Jiangsu Transportation Science and Technology and Achievement Transformation Project under Grant No.2020Y19-1(1)Key S&T Project of Ministry of Transport of the People's Republic of China(2021-ZD1-004)the Scientific Research Program Project of Shanghai Municipal Transportation Commission(JT2021-KY-016)which the authors are very grateful.
文摘The base layer constructed by cement-stabilized macadam(CSM)has been widely used in highway construction due to its low elasticity deformation and high carrying capacity.As a bearing layer,the CSM base is not exempt from fatigue cracking under cyclic loading in the service process.Cracks in the base will create irreversible structural and functional deficiencies,such as the potential for reflective cracking of subsequently placed asphalt concrete overlays.The fracture of the base will shorten the service life of the pavement.The quality of the CSM base is directly related to the bearing capacity and integrity of the whole pavement structure.It is of practical significance to further study the fatigue failure behavior of CSM material for the long-term performance of the pavement.The CSM material is a typical heterogeneous multiphase composite.On the mesoscale,CSM consists of aggregate,cement mortar,pores,and the interface transitional zone(ITZ).On the microscale,the hardened mortar contains a large number of capillary pores,unhydrated particles,hydrated crystals,etc.,which makes the spatial distribution of its material properties stochastic.In addition,cement hydration,dry shrinkage,and temperature shrinkage can also produce micro-crack defects in cement mortar.These microcracks will have crossscale evolution under load,resulting in structural fracture.Macroscopic complex deformation and mechanical response are the reflections of its microscopic and even mesoscale composition and structure.This study summarized the existing studies on the mesoscopic properties of CSM materials,respectively from the three aspects of mesostructure,structural characterization,and mesoscale fatigue damage analysis,to help the development of long-life pavement.The future research direction is to explore the mesoscale characteristics of CSM using multiscale representation and analysis methods,to establish the connection between mesoscale characteristics and macroscopic mechanical properties.
基金supported by the National Natural Science Foundation of China(Nos.52125903 and 52339001).
文摘The Moon,as the closest celestial body to the Earth,plays a pivotal role in the progression of deep space exploration,and the establishment of research outposts on its surface represents a crucial step in this mission.Lunar lava tubes are special underground caves formed by volcanic eruptions and are considered as ideal natural shelters and scientific laboratories for lunar base construction.This paper begins with an in-depth overview of the geological origins,exploration history,and distribution locations of lunar lava tubes.Subsequently,it delves into the presentation of four distinctive advantages and typical concepts for constructing bases within lava tubes,summarizing the ground-based attempts made thus far in lunar lava tube base construction.Field studies conducted on a lava tube in Hainan revealed rock compositions similar to those found during the Apollo missions and clear lava tube structures,making it a promising analog site.Lastly,the challenges and opportunities encountered in the field of geotechnical engineering regarding the establishment of lunar lava tube bases are discussed,encompassing cave exploration technologies,in-situ testing methods,geomechanical properties under lunar extreme environments,base design and structural stability assessment,excavation and reinforcement techniques,and simulated Earth-based lava tube base.
文摘BACKGROUND Traumatic internal carotid artery(ICA)occlusion is a rare complication of skull base fractures,characterized by high mortality and disability rates,and poor prognosis.Therefore,timely discovery and correct management are crucial for saving the lives of such patients and improving their prognosis.This article retrospectively analyzed the imaging and clinical data of three patients,to explore the imaging characteristics and treatment strategies for carotid artery occlusion,combined with severe skull base fractures.CASE SUMMARY This case included three patients,all male,aged 21,63,and 16 years.They underwent plain film skull computed tomography(CT)examination at the onset of their illnesses,which revealed fractures at the bases of their skulls.Ultimately,these cases were definitively diagnosed through CT angiography(CTA)examinations.The first patient did not receive surgical treatment,only anticoagulation therapy,and recovered smoothly with no residual limb dysfunction(Case 1).The other two patients both developed intracranial hypertension and underwent decompressive craniectomy.One of these patients had high intracranial pressure and significant brain swelling postoperatively,leading the family to choose to take him home(Case 2).The other patient also underwent decompressive craniectomy and recovered well postoperatively with only mild limb motor dysfunction(Case 3).We retrieved literature from PubMed on skull base fractures causing ICA occlusion to determine the imaging characteristics and treatment strategies for this type of disease.CONCLUSION For patients with cranial trauma combined with skull base fractures,it is essential to complete a CTA examination as soon as possible,to screen for blunt cerebrovascular injury.
基金supported by the Structures and Materials(S&M)Research Lab of Prince Sultan Universitysupport of Prince Sultan University in paying the article processing charges(APC)for this publication.
文摘When better fuel-air mixing in the combustion chamber or a reduction in base drag are required in vehicles,rockets,and aeroplanes,the base pressure control is activated.Controlling the base pressure and drag is necessary in both scenarios.In this work,semi-circular ribs with varying diameters(2,4,and 6 mm)positioned at six distinct positions(0.5D,1D,1.5D,2D,3D,and 4D)inside a square duct with a side of 15 mm are proposed as an efficient way to apply the passive control technique.In-depth research is done on optimising rib size for various rib sites.According to this study,the base pressure rises as rib height increases.Furthermore,the optimal location for the semi-circular ribs with a diameter of 2 mm is at 0.5D.The 1D location appears to be optimal for the 4 mm size as well.For the 6 mm size,however,the 4D position fills this function.
基金supported by the Major Scientific and Technological Projects of CNPC under grant ZD2019-183-006the National Science and Technology Major Project of China (2016ZX05014002-006)the National Natural Science Foundation of China (42072234,42272180)。
文摘This study endeavors to formulate a comprehensive methodology for establishing a Geological Knowledge Base(GKB)tailored to fracture-cavity reservoir outcrops within the North Tarim Basin.The acquisition of quantitative geological parameters was accomplished through diverse means such as outcrop observations,thin section studies,unmanned aerial vehicle scanning,and high-resolution cameras.Subsequently,a three-dimensional digital outcrop model was generated,and the parameters were standardized.An assessment of traditional geological knowledge was conducted to delineate the knowledge framework,content,and system of the GKB.The basic parameter knowledge was extracted using multiscale fine characterization techniques,including core statistics,field observations,and microscopic thin section analysis.Key mechanism knowledge was identified by integrating trace elements from filling,isotope geochemical tests,and water-rock simulation experiments.Significant representational knowledge was then extracted by employing various methods such as multiple linear regression,neural network technology,and discriminant classification.Subsequently,an analogy study was performed on the karst fracture-cavity system(KFCS)in both outcrop and underground reservoir settings.The results underscored several key findings:(1)Utilization of a diverse range of techniques,including outcrop observations,core statistics,unmanned aerial vehicle scanning,high-resolution cameras,thin section analysis,and electron scanning imaging,enabled the acquisition and standardization of data.This facilitated effective management and integration of geological parameter data from multiple sources and scales.(2)The GKB for fracture-cavity reservoir outcrops,encompassing basic parameter knowledge,key mechanism knowledge,and significant representational knowledge,provides robust data support and systematic geological insights for the intricate and in-depth examination of the genetic mechanisms of fracture-cavity reservoirs.(3)The developmental characteristics of fracturecavities in karst outcrops offer effective,efficient,and accurate guidance for fracture-cavity research in underground karst reservoirs.The outlined construction method of the outcrop geological knowledge base is applicable to various fracture-cavity reservoirs in different layers and regions worldwide.
基金Supported by PetroChina Company Limited Project (2020 B-2711)。
文摘Neodymium(Nd)-based catalyst in butadiene(Bd)polymerization has drawn interests due to its availability in affording higher cis-1,4-unit selectivity than transition metal(Ti,Co,Ni,etc.)-based catalysts[1-2].Such outstanding high cis-1,4-unit selecti-vity is hypothetically originated from the presence of 4 f orbitals,that can participate in monomer coordination and thereby govern subsequent enchainment manners.This unique characteristic also renders the active species highly susceptible to Lewis bases,and may impact the overall selectivity as well as polyme-rization behavior after coordination.Nevertheless,it is still a virgin area in such a field,and the influence of Lewis bases on Nd-based diene polymerizations is still a black box.Based on this consideration,how nitrogen-containing donors(D)impacts the overall behaviors of Nd-mediated Bd polymerizations is disclosed.
文摘Purpose: The study investigated the impact of dietary habits, specifically soda, milk kefir, water kefir, almond milk, and distilled water (control) consumption, on the microhardness of gingiva-coloured composite and acrylic denture bases. Methods: Materials included gingiva-coloured composite (Fusion Universal G1), acrylic (Imicryl), and subdivided Procryla group. Subgroups comprised 15 and 30-minute heat polymerized (Pro15, Pro30), and 1 wt% (Pro1Z) and 3 wt% (Pro3Z) zirconium added groups. Immersed in beverages for 1, 7, and 14 days, pH and microhardness were assessed. SEM examined random samples. Statistical analysis used repeated measures ANOVA, and post hoc tests (p Results: The gingiva-coloured composites displayed noteworthy time-associated microhardness changes (p 0.05). Despite variable pH levels in beverages, no substantial group interaction effects were observed (p > 0.05). Initial microhardness rankings shifted after a 14-day immersion. Conclusions: Gingiva-coloured composite exhibited the highest microhardness pre- and post-immersion, followed by Procryla30 and Imicryl groups. .
基金supported by the Tomsk State University Competitiveness Improvement Program under Grant No.2.4.2.23 IG.
文摘Location awareness in wireless networks is essential for emergency services,navigation,gaming,and many other applications.This article presents a method for source localization based on measuring the amplitude-phase distribution of the field at the base station.The existing scatterers in the target area create unique scattered field interference at each source location.The unique field interference at each source location results in a unique field signature at the base station which is used for source localization.In the proposed method,the target area is divided into a grid with a step of less than half the wavelength.Each grid node is characterized by its field signature at the base station.Field signatures corresponding to all nodes are normalized and stored in the base station as fingerprints for source localization.The normalization of the field signatures avoids the need for time synchronization between the base station and the source.When a source transmits signals,the generated field signature at the base station is normalized and then correlated with the stored fingerprints.The maximum correlation value is given by the node to which the source is the closest.Numerical simulations and results of experiments on ultrasonic waves in the air show that the ultrasonic source is correctly localized using broadband field signatures with one base station and without time synchronization.The proposed method is potentially applicable for indoor localization and navigation of mobile robots.
基金the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(2020R1A2C1A01011131)the Energy Cloud R&D Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT(2019M3F2A1073164).
文摘Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures.The base isolators may lose their damping capacity over time due to environmental or dynamic effects.This deterioration of them requires the determination of the maintenance and repair needs and is important for the long-termisolator life.In this study,an artificial intelligence prediction model has been developed to determine the damage and maintenance-repair requirements of isolators as a result of environmental effects and dynamic factors over time.With the developed model,the required damping capacity of the isolator structure was estimated and compared with the previously placed isolator capacity,and the decrease in the damping property was tried to be determined.For this purpose,a data set was created by collecting the behavior of structures with single degrees of freedom(SDOF),different stiffness,damping ratio and natural period isolated from the foundation under far fault earthquakes.The data is divided into 5 different damping classes varying between 10%and 50%.Machine learning model was trained in damping classes with the data on the structure’s response to random seismic vibrations.As a result of the isolator behavior under randomly selected earthquakes,the recorded motion and structural acceleration of the structure against any seismic vibration were examined,and the decrease in the damping capacity was estimated on a class basis.The performance loss of the isolators,which are separated according to their damping properties,has been tried to be determined,and the reductions in the amounts to be taken into account have been determined by class.In the developed prediction model,using various supervised machine learning classification algorithms,the classification algorithm providing the highest precision for the model has been decided.When the results are examined,it has been determined that the damping of the isolator structure with the machine learning method is predicted successfully at a level exceeding 96%,and it is an effective method in deciding whether there is a decrease in the damping capacity.
基金supported by the National Natural Science Foundation of China(U23A6005 and 32171721)State Key Laboratory of Pulp and Paper Engineering(202305,2023ZD01,2023C02)+1 种基金Guangdong Province Basic and Application Basic Research Fund(2023B1515040013)the Fundamental Research Funds for the Central Universities(2023ZYGXZR045).
文摘The serious environmental threat caused by petroleum-based plastics has spurred more researches in developing substitutes from renewable sources.Starch is desirable for fabricating bioplastic due to its abundance and renewable nature.However,limitations such as brittleness,hydrophilicity,and thermal properties restrict its widespread application.To overcome these issues,covalent adaptable network was constructed to fabricate a fully bio-based starch plastic with multiple advantages via Schiff base reactions.This strategy endowed starch plastic with excellent thermal processability,as evidenced by a low glass transition temperature(T_(g)=20.15℃).Through introducing Priamine with long carbon chains,the starch plastic demonstrated superior flexibility(elongation at break=45.2%)and waterproof capability(water contact angle=109.2°).Besides,it possessed a good thermal stability and self-adaptability,as well as solvent resistance and chemical degradability.This work provides a promising method to fabricate fully bio-based plastics as alternative to petroleum-based plastics.
基金Project supported by Zhoukou Normal University,ChinaHigh Level Talents Research Start Funding Project (Grant No.ZKNUC2022010)+2 种基金Key Scientific Research Project of Henan Province (Grant No.22B110022)Key Research and Development Project of Guangdong Province (Grant No.2020B0303300001)the Guangdong Basic and Applied Basic Research Foundation (Grant No.2020B1515310016)。
文摘We study the construction of mutually unbiased bases in Hilbert space for composite dimensions d which are not prime powers.We explore the results for composite dimensions which are true for prime power dimensions.We then provide a method for selecting mutually unbiased vectors from the eigenvectors of generalized Pauli matrices to construct mutually unbiased bases.In particular,we present four mutually unbiased bases in C^(15).
基金supported by the National Science Fund for Distinguished Young Scholars(22125804)the National Natural Science Foundation of China(22078155 and 22178163)the National Students'platform for innovation and entrepreneurship training program(20210291013Z).
文摘Solid strong base catalysts are highly attractive for diverse reactions owing to their advantages of neglectable corrosion,facile separation,and environmental friendliness.However,their widespread applications are impeded by basic components aggregation and low stability.In this work,we fabricate single calcium atoms on graphene(denoted as Ca1/G)by use of a redox strategy for the first time,producing solid strong base catalyst with high activity and stability.The precursor Ca(NO_(3))_(2)is first reduced to CaO at 400℃ by the support graphene,forming CaO/G with conventional basic sites,and the subsequent reduction at 850℃results in the generation of Ca1/G with atomically dispersed Ca.Various characterizations reveal that Ca single atoms are anchored on graphene in tetra-coordination(Ca-C_(2)-N_(2))where N is in situ doped from Ca(NO_(3))_(2).The atomically dispersed Ca,along with their anchoring on the support,endow Ca1/G with high activity and stability toward the transesterification reaction of ethylene carbonate with methanol.The turnover frequency value reaches 128.0 h^(-1)on Ca1/G,which is much higher than the traditional counterpart CaO/G and various reported solid strong bases(2.9-46.2 h^(-1)).Moreover,the activity of Ca1/G is well maintained during 5 cycles,while 60%of activity is lost for the conventional analogue CaO/G due to the leaching of Ca.
基金supported by the National Natural Science Foundation of China(Grant Nos.:51901153)Shanxi Scholarship Council of China(Grant No.:2019032)+1 种基金Natural Science Foundation of Shanxi(Grant No.:202103021224049)the Science and Technology Major Project of Shanxi Province(Grant No.:20191102008,20191102007)。
文摘The influence of micro-Ca/In alloying on the microstructural charac teristics,electrochemical behaviors and discharge properties of extruded dilute Mg-0.5Bi-0.5Sn-based(wt.%)alloys as anodes for Mg-air batteries are evaluated.The grain size and texture intensity of the Mg-Bi-Sn-based alloys are significantly decreased after the Ca/In alloying,particularly for the In-containing alloy.Note that,in addition to nanoscale Mg_(3)Bi_(2)phase,a new microscale Mg_(2)Bi_(2)Ca phase forms in the Ca-containing alloy.The electrochemical test results demonstrate that Ca/In micro-alloying can enhance the electrochemical activity.Using In to alloy the Mg-Bi-Sn-based alloy is effective in restricting the cathodic hydrogen evolution(CHE)kinetics,leading to a low self-corrosion rate,while severe CHE occurred after Ca alloying.The micro-alloying of Ca/In to Mg-Bi-Sn-based alloy strongly deteriorates the compactness of discharge products film and mitigates the"chunk effect"(CE),hence the cell voltage,anodic efficiency as well as discharge capacity are greatly improved.The In-containing alloy exhibits outstanding discharge performance under the combined effect of the modified microstructure and discharge products,thus making it a potential anode material for primary Mg-air battery.
基金supported by the Key R&D projects in Xinjiang (2022B01042)Research and Innovation Team Cultivation Plan of Yili Normal University (#CXZK2021002)。
文摘Humic acids(HAs)are widely used as filtrate and viscosity reducers in drilling fluids.However,their practical utility is limited due to poor stability in salt resistance and high-temperature resistance.Hightemperature coal pitch(CP)is a by-product from coal pyrolysis above 650℃.The substance's molecular structure is characterized by a dense arrangement of aromatic hydrocarbon and alkyl substituents.This unique structure gives it unique chemical properties and excellent drilling performance,surpassing traditional humic acids in drilling operations.Potassium humate is prepared from CP(CP-HA-K)by thermal catalysis.A new type of high-quality humic acid temperature-resistant viscosity-reducer(Graft CP-HA-K polymer)is synthesized with CP-HA-K,hydrolyzed polyacrylonitrile sodium salt(Na-HPAN),urea,formaldehyde,phenol and acrylamide(AAM)as raw materials.The experimental results demonstrate that the most favorable conditions for the catalytic preparation of CP-HA-K are 1 wt%catalyst dosage,30 wt%KOH dosage,a reaction temperature of 250℃,and a reaction time of 2 h,resulting in a maximum yield of CP-HA-K of 39.58%.The temperature resistance of the Graft CP-HA-K polymer is measured to be 177.39℃,which is 55.39℃ higher than that of commercial HA-K.This is due to the abundant presence of amide,hydroxyl,and amine functional groups in the Graft CP-HA-K polymer,which increase the length of the carbon chains,enhance the electrostatic repulsion on the surface of solid particles.After being aged to 120℃ for a specified duration,the Graft CP-HA-K polymer demonstrates significantly higher viscosity reduction(42.12%)compared to commercial HA-K(C-HA-K).Furthermore,the Graft CP-HA-K polymer can tolerate a high salt concentration of 8000 mg.L-1,measured after the addition of optimum amount of 3 wt%Graft CP-HA-K polymer.The action mechanism of Graft CP-HA-K polymer on high-temperature drilling fluid is that the Graft CP-HA-K polymer can increase the repulsive force between solid particles and disrupt bentonite's reticulation structure.Overall,this research provides novelty insights into the synthesis of artificial humic acid materials and the development of temperature-resistant viscosity reducers,offering a new avenue for the utilization of CP resources.
文摘Two new dinuclear lanthanidecomplexes,namely[Ln_(2)(dbm)_(2)(HL)_(2)(CH_(3)OH)_(2)]·4CH_(3)OH[Ln=Tb(1)and Dy(2),Hdbm=dibenzoylmethane]have been synthesized using prepared multidentate Schiff base ligand H_(3)L(hydroxy‑acetic acid(4‑diethylamino‑2‑hydroxy‑benzylidene)‑hydrazide)with good biological activity.Structure characterizations show that the complex comprises two Ln3+ions,two dbm-ions,two HL^(2-)ligands,two CH_(3)OH molecules,and four free methanol molecules.Each Ln^(3+)ion is eight‑coordinated.The two central Lnions are bridged by twoμ_(2)‑O atoms leading to a parallelogram[Ln2O2]core.The interaction between the compounds(H_(3)L,1,and 2)and the calf thymus DNA(CT‑DNA)has been further confirmed by UV‑Vis spectrometry,fluorescence titration,and cyclic voltammetry.The results showed that both 1 and 2 could undergo insertion with CT‑DNA.CCDC:2343005,1;2343006,2.
基金the National Key R&D Program of China(2021YFB2601200)the Science and Technology Project of Department of Communication of Zhejiang Province(2021043).
文摘In this study,the regenerative effects of different regenerants on aged SBS-modified asphalt from different perspectives were investigated,including their conventional properties,viscoelastic behavior,creep-related properties,and micromorphology.Base oils composed of different proportions of aromatic and saturated hydrocarbons as well as the styrene-butadiene-styrene(SBS)restorer were used to prepare the regenerants.The results showed that the components of the base oil of the regenerant played a crucial role in determining the characteristics and performance of the recycled SBSmodified asphalt.Regenerants containing a high proportion of aromatics dissolved the hard segment in the SBS restorer,thereby delaying the effect of a reduction in the regenerants on the performance of the aged asphalts at a high temperature.Regenerants containing a high proportion of saturates dissolved the soft segment in the SBS restorer to enhance the lowtemperature performance of the recycled asphalts.In addition,the stress sensitivity of the recycled asphalts increased with the fraction of aromatics in the regenerant.As the aromatic content of the base oil components of the regenerants increased and their saturate content decreased,the state of dispersion of the SBS phase in the recycled SBS-modified asphalts improved.The optimal content of aromatics in the base oil of the regenerants should be set in the range of 33%to 47%to ensure the adequate performance of the recycled asphalts and a high efficiency of the SBS restorer.
基金financial support extended for this academic work by the Beijing Natural Science Foundation(Grant 2232066)the Open Project Foundation of State Key Laboratory of Solid Lubrication(Grant LSL-2212).
文摘The composition of base oils affects the performance of lubricants made from them.This paper proposes a hybrid model based on gradient-boosted decision tree(GBDT)to analyze the effect of different ratios of KN4010,PAO40,and PriEco3000 component in a composite base oil system on the performance of lubricants.The study was conducted under small laboratory sample conditions,and a data expansion method using the Gaussian Copula function was proposed to improve the prediction ability of the hybrid model.The study also compared four optimization algorithms,sticky mushroom algorithm(SMA),genetic algorithm(GA),whale optimization algorithm(WOA),and seagull optimization algorithm(SOA),to predict the kinematic viscosity at 40℃,kinematic viscosity at 100℃,viscosity index,and oxidation induction time performance of the lubricant.The results showed that the Gaussian Copula function data expansion method improved the prediction ability of the hybrid model in the case of small samples.The SOA-GBDT hybrid model had the fastest convergence speed for the samples and the best prediction effect,with determination coefficients(R^(2))for the four indicators of lubricants reaching 0.98,0.99,0.96 and 0.96,respectively.Thus,this model can significantly reduce the model’s prediction error and has good prediction ability.
基金funded by the National Natural Science Foundation of China (Grant Nos. 42305150 and 42325501)the China Postdoctoral Science Foundation (Grant No. 2023M741774)。
文摘Cloud base height(CBH) is a crucial parameter for cloud radiative effect estimates, climate change simulations, and aviation guidance. However, due to the limited information on cloud vertical structures included in passive satellite radiometer observations, few operational satellite CBH products are currently available. This study presents a new method for retrieving CBH from satellite radiometers. The method first uses the combined measurements of satellite radiometers and ground-based cloud radars to develop a lookup table(LUT) of effective cloud water content(ECWC), representing the vertically varying cloud water content. This LUT allows for the conversion of cloud water path to cloud geometric thickness(CGT), enabling the estimation of CBH as the difference between cloud top height and CGT. Detailed comparative analysis of CBH estimates from the state-of-the-art ECWC LUT are conducted against four ground-based millimeter-wave cloud radar(MMCR) measurements, and results show that the mean bias(correlation coefficient) is0.18±1.79 km(0.73), which is lower(higher) than 0.23±2.11 km(0.67) as derived from the combined measurements of satellite radiometers and satellite radar-lidar(i.e., Cloud Sat and CALIPSO). Furthermore, the percentages of the CBH biases within 250 m increase by 5% to 10%, which varies by location. This indicates that the CBH estimates from our algorithm are more consistent with ground-based MMCR measurements. Therefore, this algorithm shows great potential for further improvement of the CBH retrievals as ground-based MMCR are being increasingly included in global surface meteorological observing networks, and the improved CBH retrievals will contribute to better cloud radiative effect estimates.