In order to further understand the wear mechanisms of cemented carbide cutter head of conical pick, six wornout cutter heads were investigated detailedly through scanning electron microscopy(SEM) and energy dispersi...In order to further understand the wear mechanisms of cemented carbide cutter head of conical pick, six wornout cutter heads were investigated detailedly through scanning electron microscopy(SEM) and energy dispersive spectrometry(EDS). Abrasion wear and tipping were found to be the main wear mechanisms of the worn out cutter heads. Thermal stress and impact load played important roles in the wearing process of cutter heads. The intermixed mineral particles in the worn out areas aggravated the wear on the surface of cemented carbide. The spherical particles and vine-like structures were found to distribute in the wornout areas arbitrarily, and the compositions of which were detected using EDS.展开更多
基金Funded by the National Natural Science Foundation of China(No.51475346)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20131420120002)the Shanxi Province Science Foundation(No.2013011025-1)
文摘In order to further understand the wear mechanisms of cemented carbide cutter head of conical pick, six wornout cutter heads were investigated detailedly through scanning electron microscopy(SEM) and energy dispersive spectrometry(EDS). Abrasion wear and tipping were found to be the main wear mechanisms of the worn out cutter heads. Thermal stress and impact load played important roles in the wearing process of cutter heads. The intermixed mineral particles in the worn out areas aggravated the wear on the surface of cemented carbide. The spherical particles and vine-like structures were found to distribute in the wornout areas arbitrarily, and the compositions of which were detected using EDS.