期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Constitutive model for monotonic and cyclic responses of loosely cemented sand formations 被引量:4
1
作者 Mojtaba Rahimi Dave Chan Alireza Nouri 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第4期740-752,共13页
This paper presents a model to simulate the monotonic and cyclic behaviours of weakly cemented sands.An elastoplastic constitutive model within the framework of bounding surface plasticity theory is adopted to predict... This paper presents a model to simulate the monotonic and cyclic behaviours of weakly cemented sands.An elastoplastic constitutive model within the framework of bounding surface plasticity theory is adopted to predict the mechanical behaviour of soft sandstone under monotonic and cyclic loadings. In this model, the loading surface always passes through the current stress state regardless of the type of loading. Destruction of the cementation bonds by plastic deformation in the model is considered as the primary mechanism responsible for the mechanical degradation of loosely cemented sands/weak rock.To model cyclic response, the unloading plastic and elastic moduli are formulated based on the loading/reloading plastic and elastic moduli. The proposed model was implemented in FLAC2D and evaluated against laboratory triaxial tests under monotonic and cyclic loadings, and the model results agreed well with the experimental observations. For cyclic tests, hysteresis loops are captured with reasonable accuracy. 展开更多
关键词 Cyclic loading Monotonic loading cemented sand PLASTICITY Constitutive model
下载PDF
Review of Proposed Stress-dilatancy Relationships and Plastic Potential Functions for Uncemented and Cemented Sands
2
作者 Mojtaba Rahimi 《Journal of Geological Research》 2019年第2期19-34,共16页
Stress-dilatancy relationship or plastic potential function are crucial components of every elastoplastic constitutive model developed for sand or cemented sand.This is because the associated flow rule usually does no... Stress-dilatancy relationship or plastic potential function are crucial components of every elastoplastic constitutive model developed for sand or cemented sand.This is because the associated flow rule usually does not produce acceptable outcomes for sand or cemented sand.Many formulas have been introduced based on the experimental observations in conventional and advanced plasticity models in order to capture ratio of plastic volumetric strain increment to plastic deviatoric strain increment(i.e.dilatancy rate).Lack of an article that gathers these formulas is clear in the literature.Thus,this paper is an attempt to summarize plastic potentials and specially stress-dilatancy relations so far proposed for constitutive modelling of cohesionless and cemented sands.Stress-dilatancy relation is usually not the same under compression and extension conditions.Furthermore,it may also be different under loading and unloading conditions.Therefore,the focus in this paper mainly places on the proposed stress-dilatancy relations for compressive monotonic loading.Moreover because plastic potential function can be calculated by integration of stress-dilatancy relationship,more weight is allocated to stress-dilatancy relationship in this research. 展开更多
关键词 Stress-dilatancy Plastic potential function Flow rule Dilatancy rate PLASTICITY sand cemented sand
下载PDF
Single-factor analysis and interaction terms on the mechanical and microscopic properties of cemented aeolian sand backfill 被引量:1
3
作者 Shushuai Wang Renshu Yang +2 位作者 Yongliang Li Bin Xu Bin Lu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第8期1584-1595,共12页
The use of aeolian sand(AS)as an aggregate to prepare coal mine cemented filling materials can resolve the problems of gangue shortage and excessive AS deposits.Owing to the lack of research on the mechanism of cement... The use of aeolian sand(AS)as an aggregate to prepare coal mine cemented filling materials can resolve the problems of gangue shortage and excessive AS deposits.Owing to the lack of research on the mechanism of cemented AS backfill(CASB),the response surface method(RSM)was adopted in this study to analyze the influence of ordinary Portland cement(PO)content(x_(1)),fly ash(FA)-AS(FA-AS)ratio(x_(2)),and concentration(x_(3))on the mechanical and microscopic properties of the CASB.The hydration characteristics and internal pore structure of the backfill were assessed through thermogravimetric/derivative thermogravimetric analysis,mercury intrusion porosimetry,and scanning electron microscopy.The RSM results show that the influence of each factor and interaction term on the response values is extremely significant(except x_(1)x_(3),which had no obvious effect on the 28 d strength).The uniaxial compressive strength(UCS)increased with the PO content,FA-AS ratio,and concentration.The interaction effects of x_(1)x_(2),x_(1)x_(3),and x_(2)x_(3) on the UCS at 3,7,and 28 d were analyzed.In terms of the influence of interaction items,an improvement in one factor promoted the strengthening effect of another factor.The enhancement mechanism of the curing time,PO content,and FA-AS ratio on the backfill was reflected in the increase in hydration products and pore structure optimization.By contrast,the enhancement mechanism of the concentration was mainly the pore structure optimization.The UCS was positively correlated with weight loss and micropore content but negatively correlated with the total porosity.The R^(2) value of the fitting function of the strength and weight loss,micropore content,and total porosity exceeded 0.9,which improved the characterization of the enhancement mechanism of the UCS based on the thermogravimetric analysis and pore structure.This work obtained that the influence rules and mechanisms of the PO,FA-AS,concentration,and interaction terms on the mechanical properties of the CASB provided a certain theoretical and engineering guidance for CASB filling. 展开更多
关键词 cemented aeolian sand backfill response surface method mechanical properties microscopic properties influence mechanism
下载PDF
Effect of Sand Content on Strength and Pore Structure of Cement Mortar
4
作者 卜静武 TIAN Zhenghong +1 位作者 ZHENG Shiyu TANG Zilong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第2期382-390,共9页
The effects of four sand contents on the compressive, flexural and splitting-tensile strength of cement mortars were evaluated. Moreover, we experimentally investigated the pore structure of cement mortar brought abou... The effects of four sand contents on the compressive, flexural and splitting-tensile strength of cement mortars were evaluated. Moreover, we experimentally investigated the pore structure of cement mortar brought about by changing the sand content and water/cement ratio. The changes in the pore structure were quantified by measuring the porosity and pore size distribution obtained by using mercury intrusion porosimetry(MIP) technique. The test results show that the strengths of cement mortar increase with increasing sand content. It is also suggested that the traditional water/cement ratio law can be applied to cement mortar with different sand contents, provided that a slight modification is introduced. Sand content is an important parameter influencing the pore structure of cement mortar. Moreover, there is a good relationship between the pore structure and strength of cement mortar. 展开更多
关键词 sand content strength cement mortar pore structure
下载PDF
A borehole stability study by newly designed laboratory tests on thick-walled hollow cylinders 被引量:1
5
作者 S.S.Hashemi N.Melkoumian A.Taheri 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第5期519-531,共13页
At several mineral exploration drilling sites in Australia, weakly consolidated formations mainly consistof sand particles that are poorly bonded by cementing agents such as clay, iron oxide cement or calcite.These fo... At several mineral exploration drilling sites in Australia, weakly consolidated formations mainly consistof sand particles that are poorly bonded by cementing agents such as clay, iron oxide cement or calcite.These formations are being encountered when drilling boreholes to the depth of up to 2 0 0 m. To studythe behaviour of these materials, thick-walled hollow cylinder (TWHC) and solid cylindrical syntheticspecimens were designed and prepared by adding Portland cement and water to sand grains. The effectsof different parameters such as water and cement contents, grain size distribution and mixture curingtime on the characteristics of the samples were studied to identify the mixture closely resembling theformation at the drilling site. The Hoek triaxia! cell was modified to allow the visual monitoring of graindebonding and borehole breakout processes during the laboratory tests. The results showed the significanceof real-time visual monitoring in determining the initiation of the borehole breakout. The sizescaleeffect study on TWHC specimens revealed that with the increasing borehole size, the ductility ofthe specimen decreases, however, the axial and lateral stiffnesses of the TWHC specimen remain unchanged.Under different confining pressures the lateral strain at the initiation point of boreholebreakout is considerably lower in a larger size borehole (2 0 mm) compared to that in a smaller one(10 mm). Also, it was observed that the level of peak strength increment in TWHC specimens decreaseswith the increasing confining pressure. 展开更多
关键词 Real-time monitoring Experimental investigation Thick-walled hollow cylinder(TWHC) Poorly cemented sand formations
下载PDF
Structure and Property Characterization of Oyster Shell Cementing Material 被引量:1
6
作者 钟彬杨 周强 +1 位作者 单昌锋 于岩 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2012年第1期85-92,共8页
Oyster shell powder was used as the admixture of ordinary portland cement.The effects of different addition amounts and grinding ways on the strength and stability of cement mortar were discussed and proper addition a... Oyster shell powder was used as the admixture of ordinary portland cement.The effects of different addition amounts and grinding ways on the strength and stability of cement mortar were discussed and proper addition amount of oyster shell powder was determined.The structure and property changes of cementing samples with different oyster shell powder contents were tested by XRD and SEM means.The results revealed that compressive and rupture strengths of the sample with 10% oyster shell powder was close to those of the original one without addition.Stability experiment showed that the sample prepared by pat method had smooth surface without crack and significant expansion or shrinkage after pre-curing and boiling,which indicated that cementing material dosed with oyster shell powder had fine stability.XRD and SEM observation showed that oyster shell independently exists in the cementing material. 展开更多
关键词 oyster shell powder cement sand strength STABILITY
下载PDF
Research review of the cement sand and gravel(CSG)dam 被引量:9
7
作者 Xin CAI Yingli WU +1 位作者 Xingwen GUO Yu MING 《Frontiers of Structural and Civil Engineering》 SCIE EI 2012年第1期19-24,共6页
The cement sand and gravel(CSG)dam is a new style of dam that owes the advantages both of the concrete faced rock-fill dam(CRFD)and roller compacted concrete(RCC)gravity dam,because of which it has attracted much atte... The cement sand and gravel(CSG)dam is a new style of dam that owes the advantages both of the concrete faced rock-fill dam(CRFD)and roller compacted concrete(RCC)gravity dam,because of which it has attracted much attention of experts home and abroad.At present,some researches on physic-mechanical property of CSG material and work behavior of CSG dam have been done.This papcr introduces the development and characteristics of CSG dam systematically,and summarizes the progress of the study on basic tests,constitutive relation of CSG material and numerical analysis of CSG dam,in addition,indicates research and application aspect of the dam. 展开更多
关键词 cement sand and gravel(CSG)dam cement sand and gravel(CSG)material research review
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部