The auto efficiently hydration heat arrangement and the non-contacting electrical resistivity device were used to test the therrnology effect and the resistivity variation of Portland cement hydration. The structure f...The auto efficiently hydration heat arrangement and the non-contacting electrical resistivity device were used to test the therrnology effect and the resistivity variation of Portland cement hydration. The structure forming model of Portland cement initial hydration was established through the systematical experiments with different cements, the amount of mixing water and the chemical admixture. The experimental results show that, the structure forming model of cement could be divided into three stages, i e, solution-solution equilibrium period, structure forming period and structure stabilizing period. Along with the increase of mixing water, the time of inflexion appeared is in advance for thermal process of cement hydration and worsened for the structure forming process. Comparison with the control specimen, adding Na2SO4 makes the minimum critical point lower, the flattening period shorter and the growing slope after stage one steeper. So the hydration and structure forming process of Portland cement could be described more exactly by applying the thermal model and the structure-forming model.展开更多
The effects of four sand contents on the compressive, flexural and splitting-tensile strength of cement mortars were evaluated. Moreover, we experimentally investigated the pore structure of cement mortar brought abou...The effects of four sand contents on the compressive, flexural and splitting-tensile strength of cement mortars were evaluated. Moreover, we experimentally investigated the pore structure of cement mortar brought about by changing the sand content and water/cement ratio. The changes in the pore structure were quantified by measuring the porosity and pore size distribution obtained by using mercury intrusion porosimetry(MIP) technique. The test results show that the strengths of cement mortar increase with increasing sand content. It is also suggested that the traditional water/cement ratio law can be applied to cement mortar with different sand contents, provided that a slight modification is introduced. Sand content is an important parameter influencing the pore structure of cement mortar. Moreover, there is a good relationship between the pore structure and strength of cement mortar.展开更多
文摘The auto efficiently hydration heat arrangement and the non-contacting electrical resistivity device were used to test the therrnology effect and the resistivity variation of Portland cement hydration. The structure forming model of Portland cement initial hydration was established through the systematical experiments with different cements, the amount of mixing water and the chemical admixture. The experimental results show that, the structure forming model of cement could be divided into three stages, i e, solution-solution equilibrium period, structure forming period and structure stabilizing period. Along with the increase of mixing water, the time of inflexion appeared is in advance for thermal process of cement hydration and worsened for the structure forming process. Comparison with the control specimen, adding Na2SO4 makes the minimum critical point lower, the flattening period shorter and the growing slope after stage one steeper. So the hydration and structure forming process of Portland cement could be described more exactly by applying the thermal model and the structure-forming model.
基金Founded by the National Natural Science Foundation of China(Nos.51279054 and 51279052)
文摘The effects of four sand contents on the compressive, flexural and splitting-tensile strength of cement mortars were evaluated. Moreover, we experimentally investigated the pore structure of cement mortar brought about by changing the sand content and water/cement ratio. The changes in the pore structure were quantified by measuring the porosity and pore size distribution obtained by using mercury intrusion porosimetry(MIP) technique. The test results show that the strengths of cement mortar increase with increasing sand content. It is also suggested that the traditional water/cement ratio law can be applied to cement mortar with different sand contents, provided that a slight modification is introduced. Sand content is an important parameter influencing the pore structure of cement mortar. Moreover, there is a good relationship between the pore structure and strength of cement mortar.