China is transitioning its industrial structure from labor-and resource-intensive industries that previously contributed significantly to the country’s GDP growth to technology-intensive industries emphasizing a high...China is transitioning its industrial structure from labor-and resource-intensive industries that previously contributed significantly to the country’s GDP growth to technology-intensive industries emphasizing a highly-skilled workforce and sustainability to achieve high-quality economic growth.This paper examines the impact of the RMB exchange rate on high-quality economic growth through theoretical modeling and empirical analysis and discusses the variable of overseas education to explore the mechanism of how the RMB exchange rate and overseas education jointly impact high-quality economic growth.The research sample includes the National Bureau of Statistics data on education from 1995 to 2015,the Bank for International Settlements(BIS)data on the RMB exchange rate,and the added value of China’s high-quality economic growth estimated based on the national economy data.An empirical analysis of theoretical expectations was conducted,finding that RMB appreciation could make a positive contribution to China’s high-quality economic growth;RMB exchange rate fluctuations would impact the relative cost of overseas education and overseas returnees could have a positive impact on domestic resource utilization efficiency and domestic capacity to make sci-tech innovations,thereby injecting vitality to high-quality economic growth.This study focuses on both the RMB exchange rate and the population studying abroad,providing additional observation dimensions to existing research.展开更多
The stability of cemented paste backfill(CPB)is threatened by dynamic disturbance,but the conventional low strain rate laboratory pressure test has difficulty achieving this research purpose.Therefore,a split Hopkinso...The stability of cemented paste backfill(CPB)is threatened by dynamic disturbance,but the conventional low strain rate laboratory pressure test has difficulty achieving this research purpose.Therefore,a split Hopkinson pressure bar(SHPB)was utilized to investigate the high strain rate compressive behavior of CPB with dynamic loads of 0.4,0.8,and 1.2 MPa.And the failure modes were determined by macro and micro analysis.CPB with different cement-to-tailings ratios,solid mass concentrations,and curing ages was prepared to conduct the SHPB test.The results showed that increasing the cement content,tailings content,and curing age can improve the dynamic compressive strength and elastic modulus.Under an impact load,a higher strain rate can lead to larger increasing times of the dynamic compressive strength when compared with static loading.And the dynamic compressive strength of CPB has an exponential correlation with the strain rate.The macroscopic failure modes indicated that CPB is more seriously damaged under dynamic loading.The local damage was enhanced,and fine cracks were formed in the interior of the CPB.This is because the CPB cannot dissipate the energy of the high strain rate stress wave in a short loading period.展开更多
Effects of strain rate and water-to-cement ratio on the dynamic compressive mechanical behavior of cement mortar are investigated by split Hopkinson pressure bar(SHPB) tests. 124 specimens are subjected to dynamic uni...Effects of strain rate and water-to-cement ratio on the dynamic compressive mechanical behavior of cement mortar are investigated by split Hopkinson pressure bar(SHPB) tests. 124 specimens are subjected to dynamic uniaxial compressive loadings.Strain rate sensitivity of the materials is measured in terms of failure modes, stress-strain curves, compressive strength, dynamic increase factor(DIF) and critical strain at peak stress. A significant change in the stress-strain response of the materials with each order of magnitude increase in strain rate is clearly seen from test results. The slope of the stress-strain curve after peak value for low water-to-cement ratio is steeper than that of high water-to-cement ratio mortar. The compressive strength increases with increasing strain rate. With increase in strain rate, the dynamic increase factor(DIF) increases. However, this increase in DIF with increase in strain rate does not appear to be a function of the water-to-cement ratio. The critical compressive strain increases with the strain rate.展开更多
The relation between the melting point of Portland cement raw meal and its heating rate have been studied. The raw meal was burnt at different heating rate ranging from 10 similar to 900 degrees C/min Dy the following...The relation between the melting point of Portland cement raw meal and its heating rate have been studied. The raw meal was burnt at different heating rate ranging from 10 similar to 900 degrees C/min Dy the following methods: (A) in electric resistance furnace; (B) in DTA-TG analyzer with infrared ray focused heating; (C) in high temperature microscope with electron stream heating. Based on thermal analysis theory and melt theory and the tests above, it is found that melting point T-m of cement raw meal decreases with the increased heating rate Phi during burning in the following relation: T-m=1280-0.107 empty set.展开更多
A solid phase crystallizing method has been developed to grow a Si crystal at tem-peratures as low as 550 ℃. Using this method, a high-quality thin-film polycrystalline silicon (Poly-Si) was obtained. The largest gra...A solid phase crystallizing method has been developed to grow a Si crystal at tem-peratures as low as 550 ℃. Using this method, a high-quality thin-film polycrystalline silicon (Poly-Si) was obtained. The largest grain size, examined with X-ray diffraction spectroscopy and scanning electron microscopy images of recrystallized samples, is approximately 1 /μm for substrate temperature at 300 ℃ and annealed at 550℃ for 3 hours.展开更多
Two types of fatigue tests, a rotating bending fatigue test and a three- or four-point bending fatigue test, were carried out on a fine grained WC-Co cemented carbide to evaluate its fatigue crack growth behavior and ...Two types of fatigue tests, a rotating bending fatigue test and a three- or four-point bending fatigue test, were carried out on a fine grained WC-Co cemented carbide to evaluate its fatigue crack growth behavior and fatigue lifetime. From successive observations of the specimen surface during the fatigue process, it was revealed that most of the fatigue lifetime of the tested WC-Co cemented carbide was occupied with crack growth cycles. Using the basic equation of fracture mechanics, the relationship between the fatigue crack growth rate(da/dN) and the maximum stress intensity factor(Kmax) was derived. From this relation, both the values of the threshold intensity factor(Kth) and the fatigue fracture toughness(Kfc) of the material were determined. The fatigue lifetime of the WC-Co cemented carbide was estimated by analysis based on the modified linear elastic fracture mechanics approach. Good agreement between the estimated and experimental fatigue lifetimes was confirmed.展开更多
To obtain the influence laws of the fine gangue rate on the properties of coal gangue cementitious paste, the slump, divergence, stratification, bleeding, setting time and mechanical strength with the change of fine g...To obtain the influence laws of the fine gangue rate on the properties of coal gangue cementitious paste, the slump, divergence, stratification, bleeding, setting time and mechanical strength with the change of fine gangue rate were studied on the basis of keeping the amount of cementing material and slurry concentration unchanged. The porosity and the distribution of pore diameter of the filling specimen for curing 28 d were tested by a mercury injection instrument under different fine gangue rate conditions. It was shown that the slump, divergence, setting time and compressive strength of the paste firstly increased and then decreased with increasing fine gangue rate. The stratification and bleeding rate decreased with increasing fine gangue rate. The smaller the critical pore size of the paste was, the smaller the porosity was, the smaller the average pore size was. When the fine gangue rate was 40%, the maximum critical pore diameter of the paste was 55.79 μm, and the corresponding porosity was 17.54%, and the properties of filling paste were the best. When the fine gangue rate further increased, the aggregate surface area increased, and the reaction product of cementitious materials could not effectively fill the pores. It weakened the agglomeration effect. The particles surface of coal gangue was fragmental and flake deposit with irregular shape and uneven fold morphology. It was easy to be bonded with the surface of other filling material. The hydration products of coal gangue cementitious material were a large number of C-S-H gel with fibrous shape and ettringite(AFt) with compact block structure. The theoretical reference was provided for the preparation of low cost gangue cemented filling materials in coal mines.展开更多
The start point in this paper is dynamic load damage caused by hydrodynamic pressure to the inside void of cement stabilized macadam base considering the affect of gradation type,testing time and cracking simulation.T...The start point in this paper is dynamic load damage caused by hydrodynamic pressure to the inside void of cement stabilized macadam base considering the affect of gradation type,testing time and cracking simulation.Then the moisture damage rule of cement stabilized macadam was investigated in the lab by using the hydrodynamic pressure simulation device and testing system.Test results shows that the cement stabilized macadam with dense framework structure has better moisture-resistant performance than mixtures with suspend-dense structure.And the strength deterioration is just one-third of origin one when crack in base is loaded by hydrodynamic pressure.展开更多
Stress-dilatancy relationship or plastic potential function are crucial components of every elastoplastic constitutive model developed for sand or cemented sand.This is because the associated flow rule usually does no...Stress-dilatancy relationship or plastic potential function are crucial components of every elastoplastic constitutive model developed for sand or cemented sand.This is because the associated flow rule usually does not produce acceptable outcomes for sand or cemented sand.Many formulas have been introduced based on the experimental observations in conventional and advanced plasticity models in order to capture ratio of plastic volumetric strain increment to plastic deviatoric strain increment(i.e.dilatancy rate).Lack of an article that gathers these formulas is clear in the literature.Thus,this paper is an attempt to summarize plastic potentials and specially stress-dilatancy relations so far proposed for constitutive modelling of cohesionless and cemented sands.Stress-dilatancy relation is usually not the same under compression and extension conditions.Furthermore,it may also be different under loading and unloading conditions.Therefore,the focus in this paper mainly places on the proposed stress-dilatancy relations for compressive monotonic loading.Moreover because plastic potential function can be calculated by integration of stress-dilatancy relationship,more weight is allocated to stress-dilatancy relationship in this research.展开更多
文摘China is transitioning its industrial structure from labor-and resource-intensive industries that previously contributed significantly to the country’s GDP growth to technology-intensive industries emphasizing a highly-skilled workforce and sustainability to achieve high-quality economic growth.This paper examines the impact of the RMB exchange rate on high-quality economic growth through theoretical modeling and empirical analysis and discusses the variable of overseas education to explore the mechanism of how the RMB exchange rate and overseas education jointly impact high-quality economic growth.The research sample includes the National Bureau of Statistics data on education from 1995 to 2015,the Bank for International Settlements(BIS)data on the RMB exchange rate,and the added value of China’s high-quality economic growth estimated based on the national economy data.An empirical analysis of theoretical expectations was conducted,finding that RMB appreciation could make a positive contribution to China’s high-quality economic growth;RMB exchange rate fluctuations would impact the relative cost of overseas education and overseas returnees could have a positive impact on domestic resource utilization efficiency and domestic capacity to make sci-tech innovations,thereby injecting vitality to high-quality economic growth.This study focuses on both the RMB exchange rate and the population studying abroad,providing additional observation dimensions to existing research.
基金supported by the National Key R&D Program of China(No.2017YFC0602902)the National Natural Scienceof China(Nos.41807259 and 51874350)+2 种基金the Fundamental Research Funds for the Central Universities of Central South University(No.2016zztx096)The support provided by the China Scholarship Council(CSC)during the visit of the first author toécole Polytechnique de Montréal(Student ID:201706370039)the materials supply by Fan Kou lead-zinc mine of Shenzhen Zhongjin Lingnan Non-ferrous metal Company Limited。
文摘The stability of cemented paste backfill(CPB)is threatened by dynamic disturbance,but the conventional low strain rate laboratory pressure test has difficulty achieving this research purpose.Therefore,a split Hopkinson pressure bar(SHPB)was utilized to investigate the high strain rate compressive behavior of CPB with dynamic loads of 0.4,0.8,and 1.2 MPa.And the failure modes were determined by macro and micro analysis.CPB with different cement-to-tailings ratios,solid mass concentrations,and curing ages was prepared to conduct the SHPB test.The results showed that increasing the cement content,tailings content,and curing age can improve the dynamic compressive strength and elastic modulus.Under an impact load,a higher strain rate can lead to larger increasing times of the dynamic compressive strength when compared with static loading.And the dynamic compressive strength of CPB has an exponential correlation with the strain rate.The macroscopic failure modes indicated that CPB is more seriously damaged under dynamic loading.The local damage was enhanced,and fine cracks were formed in the interior of the CPB.This is because the CPB cannot dissipate the energy of the high strain rate stress wave in a short loading period.
基金Project(51479048) supported by National Natural Science Foundation of China
文摘Effects of strain rate and water-to-cement ratio on the dynamic compressive mechanical behavior of cement mortar are investigated by split Hopkinson pressure bar(SHPB) tests. 124 specimens are subjected to dynamic uniaxial compressive loadings.Strain rate sensitivity of the materials is measured in terms of failure modes, stress-strain curves, compressive strength, dynamic increase factor(DIF) and critical strain at peak stress. A significant change in the stress-strain response of the materials with each order of magnitude increase in strain rate is clearly seen from test results. The slope of the stress-strain curve after peak value for low water-to-cement ratio is steeper than that of high water-to-cement ratio mortar. The compressive strength increases with increasing strain rate. With increase in strain rate, the dynamic increase factor(DIF) increases. However, this increase in DIF with increase in strain rate does not appear to be a function of the water-to-cement ratio. The critical compressive strain increases with the strain rate.
文摘The relation between the melting point of Portland cement raw meal and its heating rate have been studied. The raw meal was burnt at different heating rate ranging from 10 similar to 900 degrees C/min Dy the following methods: (A) in electric resistance furnace; (B) in DTA-TG analyzer with infrared ray focused heating; (C) in high temperature microscope with electron stream heating. Based on thermal analysis theory and melt theory and the tests above, it is found that melting point T-m of cement raw meal decreases with the increased heating rate Phi during burning in the following relation: T-m=1280-0.107 empty set.
基金This work was supported by the Guangdong Provincial Natural Science Foundation of China No.990781.
文摘A solid phase crystallizing method has been developed to grow a Si crystal at tem-peratures as low as 550 ℃. Using this method, a high-quality thin-film polycrystalline silicon (Poly-Si) was obtained. The largest grain size, examined with X-ray diffraction spectroscopy and scanning electron microscopy images of recrystallized samples, is approximately 1 /μm for substrate temperature at 300 ℃ and annealed at 550℃ for 3 hours.
文摘Two types of fatigue tests, a rotating bending fatigue test and a three- or four-point bending fatigue test, were carried out on a fine grained WC-Co cemented carbide to evaluate its fatigue crack growth behavior and fatigue lifetime. From successive observations of the specimen surface during the fatigue process, it was revealed that most of the fatigue lifetime of the tested WC-Co cemented carbide was occupied with crack growth cycles. Using the basic equation of fracture mechanics, the relationship between the fatigue crack growth rate(da/dN) and the maximum stress intensity factor(Kmax) was derived. From this relation, both the values of the threshold intensity factor(Kth) and the fatigue fracture toughness(Kfc) of the material were determined. The fatigue lifetime of the WC-Co cemented carbide was estimated by analysis based on the modified linear elastic fracture mechanics approach. Good agreement between the estimated and experimental fatigue lifetimes was confirmed.
基金Funded by the National Science Foundation of China(No.51574055)the Key State Laboratory of Coastal and Offshore Engineering(No.LP1720)
文摘To obtain the influence laws of the fine gangue rate on the properties of coal gangue cementitious paste, the slump, divergence, stratification, bleeding, setting time and mechanical strength with the change of fine gangue rate were studied on the basis of keeping the amount of cementing material and slurry concentration unchanged. The porosity and the distribution of pore diameter of the filling specimen for curing 28 d were tested by a mercury injection instrument under different fine gangue rate conditions. It was shown that the slump, divergence, setting time and compressive strength of the paste firstly increased and then decreased with increasing fine gangue rate. The stratification and bleeding rate decreased with increasing fine gangue rate. The smaller the critical pore size of the paste was, the smaller the porosity was, the smaller the average pore size was. When the fine gangue rate was 40%, the maximum critical pore diameter of the paste was 55.79 μm, and the corresponding porosity was 17.54%, and the properties of filling paste were the best. When the fine gangue rate further increased, the aggregate surface area increased, and the reaction product of cementitious materials could not effectively fill the pores. It weakened the agglomeration effect. The particles surface of coal gangue was fragmental and flake deposit with irregular shape and uneven fold morphology. It was easy to be bonded with the surface of other filling material. The hydration products of coal gangue cementitious material were a large number of C-S-H gel with fibrous shape and ettringite(AFt) with compact block structure. The theoretical reference was provided for the preparation of low cost gangue cemented filling materials in coal mines.
基金Sponsored by the Guangdong Provincial Department of Transportation Science and Technology Project (Grant No. 2010-04-003)Ministry of Transportation Western Transportation Construction Science and Technology Project (Grant No. 200631881216)
文摘The start point in this paper is dynamic load damage caused by hydrodynamic pressure to the inside void of cement stabilized macadam base considering the affect of gradation type,testing time and cracking simulation.Then the moisture damage rule of cement stabilized macadam was investigated in the lab by using the hydrodynamic pressure simulation device and testing system.Test results shows that the cement stabilized macadam with dense framework structure has better moisture-resistant performance than mixtures with suspend-dense structure.And the strength deterioration is just one-third of origin one when crack in base is loaded by hydrodynamic pressure.
文摘Stress-dilatancy relationship or plastic potential function are crucial components of every elastoplastic constitutive model developed for sand or cemented sand.This is because the associated flow rule usually does not produce acceptable outcomes for sand or cemented sand.Many formulas have been introduced based on the experimental observations in conventional and advanced plasticity models in order to capture ratio of plastic volumetric strain increment to plastic deviatoric strain increment(i.e.dilatancy rate).Lack of an article that gathers these formulas is clear in the literature.Thus,this paper is an attempt to summarize plastic potentials and specially stress-dilatancy relations so far proposed for constitutive modelling of cohesionless and cemented sands.Stress-dilatancy relation is usually not the same under compression and extension conditions.Furthermore,it may also be different under loading and unloading conditions.Therefore,the focus in this paper mainly places on the proposed stress-dilatancy relations for compressive monotonic loading.Moreover because plastic potential function can be calculated by integration of stress-dilatancy relationship,more weight is allocated to stress-dilatancy relationship in this research.