In order to veritably measure the first peak of hydration heat evolution that has been illustrated important in indicating cement behavior in early hydration, an improved way of water addition into cement in isotherma...In order to veritably measure the first peak of hydration heat evolution that has been illustrated important in indicating cement behavior in early hydration, an improved way of water addition into cement in isothermally calorimetric experiment is put forward. The experimental results indicated that: the magnitude of first peak of heat evolution varies from sample to sample, correlation between heat evolution during first peak of heat evolution and initial (as well as final) setting time is unsatisfactory when samples are not classified; while groups of sample classified based on strength grade represent satisfactory correlations, which indicating the existence of close relation between hydration heat evolution in much earlier hydration age and setting property of cement in rather later age. Importance of first peak in hydration heat evolution for understanding cement setting property and reasons for sample classification are also discussed in this paper.展开更多
As a 3D micro-nano material, layered double hydroxides have been widely used in many fields, especially for reinforced composite materials. In this paper, Li Al-LDHs was obtained by a hydrothermal method. In order to ...As a 3D micro-nano material, layered double hydroxides have been widely used in many fields, especially for reinforced composite materials. In this paper, Li Al-LDHs was obtained by a hydrothermal method. In order to investigate the effects of Li Al-LDHs on the early hydration of calcium sulphoaluminate(CSA) cement paste, compressive strength, setting time and hydration heat were tested while X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FT-IR), scaning electron microscopy(SEM) and differential scanning calorimetry(DSC) analysis were employed. The results indicated that Li Al-LDHs could significantly improve the early compressive strength and shorten the setting time of calcium sulphoaluminate cement paste with 3 wt% concentration. Besides, the hydration exothermic rate within 5h was accelerated with increasing Li Al-LDHs content. Moreover, the addition of Li Al-LDHs did not result in the formation of a new phase, but increased the quantity of hydration products providing higher compressive strength, shorter setting time and denser microstructure.展开更多
In a cost-saving move, the soft rocks composed of highly-weathered phyllites available on- site were used to fill the subgrade in the eastern Ankang section of the expressway of Shiyan to Tianshui, China. Cement admix...In a cost-saving move, the soft rocks composed of highly-weathered phyllites available on- site were used to fill the subgrade in the eastern Ankang section of the expressway of Shiyan to Tianshui, China. Cement admixture was used to improve the performance of the weathered phyllites. In order to determine the best mix ratio, values corresponding to compaction performance, unconfined compressive strength, and the California bearing ratio (CBR) were analyzed for variable cement content weight percentages (3%, 4%, 5%, and 6%) using test subgrade plots in the field. Field measurements of resilience modulus and deflection confirmed that the strength of the subgrade increased as the cement ratio increased. In order to further evaluate the cement/phyllite mixture, the performance of the 3% cement ratio sample was evaluated under saturated conditions (with various levels of moisture addition and soaking time) using both the wetting deformation and resilient modulus values. Results suggest that moisture added and soaking time are key factors that affect the seepage depth, water content, and resilient modulus. The recommend values for the cement addition and for the water content are given out. This study can aid in pre- vention of highway damage by improving the foundation capacity and lengthening the lifecycle of the highway in phyllite distributed region at home and abroad.展开更多
基金Funded by Guangxi Science Foundation(No. 0639006)
文摘In order to veritably measure the first peak of hydration heat evolution that has been illustrated important in indicating cement behavior in early hydration, an improved way of water addition into cement in isothermally calorimetric experiment is put forward. The experimental results indicated that: the magnitude of first peak of heat evolution varies from sample to sample, correlation between heat evolution during first peak of heat evolution and initial (as well as final) setting time is unsatisfactory when samples are not classified; while groups of sample classified based on strength grade represent satisfactory correlations, which indicating the existence of close relation between hydration heat evolution in much earlier hydration age and setting property of cement in rather later age. Importance of first peak in hydration heat evolution for understanding cement setting property and reasons for sample classification are also discussed in this paper.
基金Funded by the National Natural Sciense Foundation of China(No.51272068)
文摘As a 3D micro-nano material, layered double hydroxides have been widely used in many fields, especially for reinforced composite materials. In this paper, Li Al-LDHs was obtained by a hydrothermal method. In order to investigate the effects of Li Al-LDHs on the early hydration of calcium sulphoaluminate(CSA) cement paste, compressive strength, setting time and hydration heat were tested while X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FT-IR), scaning electron microscopy(SEM) and differential scanning calorimetry(DSC) analysis were employed. The results indicated that Li Al-LDHs could significantly improve the early compressive strength and shorten the setting time of calcium sulphoaluminate cement paste with 3 wt% concentration. Besides, the hydration exothermic rate within 5h was accelerated with increasing Li Al-LDHs content. Moreover, the addition of Li Al-LDHs did not result in the formation of a new phase, but increased the quantity of hydration products providing higher compressive strength, shorter setting time and denser microstructure.
基金support of National Natural Science Foundation of China (51378072)Special Fund for Basic Scientific Research of Central Colleges, Chang'an University (310821162012, 310821161023)
文摘In a cost-saving move, the soft rocks composed of highly-weathered phyllites available on- site were used to fill the subgrade in the eastern Ankang section of the expressway of Shiyan to Tianshui, China. Cement admixture was used to improve the performance of the weathered phyllites. In order to determine the best mix ratio, values corresponding to compaction performance, unconfined compressive strength, and the California bearing ratio (CBR) were analyzed for variable cement content weight percentages (3%, 4%, 5%, and 6%) using test subgrade plots in the field. Field measurements of resilience modulus and deflection confirmed that the strength of the subgrade increased as the cement ratio increased. In order to further evaluate the cement/phyllite mixture, the performance of the 3% cement ratio sample was evaluated under saturated conditions (with various levels of moisture addition and soaking time) using both the wetting deformation and resilient modulus values. Results suggest that moisture added and soaking time are key factors that affect the seepage depth, water content, and resilient modulus. The recommend values for the cement addition and for the water content are given out. This study can aid in pre- vention of highway damage by improving the foundation capacity and lengthening the lifecycle of the highway in phyllite distributed region at home and abroad.