期刊文献+
共找到146篇文章
< 1 2 8 >
每页显示 20 50 100
Study on the cementitiousness of asbestos tailings 被引量:1
1
作者 Lu Zhong yuan, Huo Ji chuan, Liao Qi long, Xiong Yi mou Southwest Institute of Technology, Mianyang\ 621002, Sichuan of China 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 1998年第1期100-104,共5页
The cementitiousness of dehydration asbestos tailings(serpentine, 3MgO.2SiO 2.2H 2O) in different conditions was studied. The result shown that dehydration asbestos tailings have better cementitiousness in certain con... The cementitiousness of dehydration asbestos tailings(serpentine, 3MgO.2SiO 2.2H 2O) in different conditions was studied. The result shown that dehydration asbestos tailings have better cementitiousness in certain condition and it can be used in building materials industry. It was also found that MgO powder, fly ash or quick lime can improve regularly the cementitiousness of asbestos tailings. 展开更多
关键词 asbestos tailings (serpentine) cementitiousness.
下载PDF
高应变率荷载作用下钢筋与ECC的黏结滑移关系研究
2
作者 崔双双 孟瑶 +1 位作者 陈伟宏 孙浩 《振动与冲击》 EI CSCD 北大核心 2024年第1期71-82,共12页
采用水泥基复合材料(engineering cementitious composite,ECC)替代混凝土可以提高结构在偶然荷载作用下的抗连续倒塌性能,但在悬链线大变形阶段钢筋与ECC间可能会出现黏结滑移破坏。基于分离式霍普金森压杆(SHPB)试验装置,进行了钢筋与... 采用水泥基复合材料(engineering cementitious composite,ECC)替代混凝土可以提高结构在偶然荷载作用下的抗连续倒塌性能,但在悬链线大变形阶段钢筋与ECC间可能会出现黏结滑移破坏。基于分离式霍普金森压杆(SHPB)试验装置,进行了钢筋与ECC的动态黏结滑移性能试验,分析了ECC强度等级、应变率、钢筋直径对极限黏结强度、刚度和滑移量的影响规律,获得了高应变率下钢筋与ECC的平均黏结滑移曲线,得到其黏结滑移破坏模式。并与静态黏结滑移试验进行对比,得到了动态黏结强度增强因子。进一步,通过钢筋开槽内贴应变片法,获得不同锚固位置的黏结应力及相对滑移的分布规律,提出黏结位置函数。最后,根据试验结果得到钢筋与ECC平均黏结滑移本构,进而乘以黏结位置函数得到考虑锚固位置影响的动态黏结滑移本构,为ECC结构构件设计及有限元分析提供试验依据和理论参考。 展开更多
关键词 水泥基复合材料(engineering cementitious composite ECC) 高应变率荷载 钢筋-ECC黏结滑移 分离式霍普金森压杆(SHPB)试验 位置函数 黏结滑移本构关系
下载PDF
Hydration Behavior and Cementitious Properties of Calcium Carbonate-aluminate Minerals Composite
3
作者 王冲 周帅 +2 位作者 ZOU Luyao LIU Jiawen ZHENG Yalin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期126-133,共8页
The purpose of this research is to investigate the hydration behavior and cementitious properties of the mixture of calcium carbonate and aluminate, and to explore whether it can be adopted as a new low-carbon cementi... The purpose of this research is to investigate the hydration behavior and cementitious properties of the mixture of calcium carbonate and aluminate, and to explore whether it can be adopted as a new low-carbon cementitious material. The composite system of calcium carbonate and aluminate minerals is studied by measuring the component of hydration products, the hydration heat, setting time and compressive strength.The results prove that the composite system has certain cementitious properties and is feasible to prepare new low-carbon cement. 展开更多
关键词 LIMESTONE hydrated calcium carboaluminate cementitious properties mechanical properties
下载PDF
Exploring the potential of olivine-containing copper-nickel slag for carbon dioxide mineralization in cementitious materials
4
作者 Qianqian Wang Zequn Yao +1 位作者 Lijie Guo Xiaodong Shen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期562-573,共12页
Water-quenched copper-nickel metallurgical slag enriched with olivine minerals exhibits promising potential for the production of CO_(2)-mineralized cementitious materials.In this work,copper-nickel slag-based cementi... Water-quenched copper-nickel metallurgical slag enriched with olivine minerals exhibits promising potential for the production of CO_(2)-mineralized cementitious materials.In this work,copper-nickel slag-based cementitious material(CNCM)was synthesized by using different chemical activation methods to enhance its hydration reactivity and CO_(2) mineralization capacity.Different water curing ages and carbonation conditions were explored related to their carbonation and mechanical properties development.Meanwhile,thermogravimetry differential scanning calorimetry and X-ray diffraction methods were applied to evaluate the CO_(2) adsorption amount and carbonation products of CNCM.Microstructure development of carbonated CNCM blocks was examined by backscattered electron imaging(BSE)with energy-dispersive X-ray spectrometry.Results showed that among the studied samples,the CNCM sample that was subjected to water curing for 3 d exhibited the highest CO_(2) sequestration amount of 8.51wt%at 80℃and 72 h while presenting the compressive strength of 39.07 MPa.This result indicated that 1 t of this CNCM can sequester 85.1 kg of CO_(2) and exhibit high compressive strength.Although the addition of citric acid did not improve strength development,it was beneficial to increase the CO_(2) diffusion and adsorption amount under the same carbonation conditions from BSE results.This work provides guidance for synthesizing CO_(2)-mineralized cementitious materials using large amounts of metallurgical slags containing olivine minerals. 展开更多
关键词 copper-nickel slag FAYALITE CO_(2)sequestration cementitious material ADMIXTURES carbonation conditions
下载PDF
Effect of the Retarder on Initial Hydration and Mechanical Properties of the"one-step"Alkaliactivated Composite Cementitious Materials
5
作者 DING Rui HE Yue +3 位作者 LI Xingchen LI Han TIAN Hao WANG Hongen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1199-1213,共15页
This paper studied the effects of different retarders on the performance of the"one-step"alkali-activated composite cementitious material(ACCM)which is composed of ground granulated blast slag(GGBS)and fly a... This paper studied the effects of different retarders on the performance of the"one-step"alkali-activated composite cementitious material(ACCM)which is composed of ground granulated blast slag(GGBS)and fly ash(FA),and analyzed its mechanical properties,hydration mechanism,and retardation mechanism.The effects of retarders on the hydration products,mechanical properties,and hydration kinetics of ACCM were investigated using XRD,SEM,FTIR,EDS,and thermoactive microcalorimetry.The results showed that Na_(2)B_(4)O_(7)·10H_(2)O(B)delayed the exotherm during the alkali activation process and could effectively delay the setting time of ACCM,but the mechanical properties were slightly decreased.The setting time of ACCM increased with the increase in SG content,but the mechanical properties of ACCM decreased with the increase in SG content.C1_(2)H_(22)O_(11)(CHO)could effectively delay the hydration reaction of ACCM and weakly enhanced the compressive strength.H_(3)PO_(4)(HP)at a concentration of 0.05 mol/L had a certain effect on ACCM retardation,but HP at a concentration of 0.07 and 0.09 mol/L had an effect of promoting the setting and hardening time of ACCM. 展开更多
关键词 "one-step"alkali-activated composite cementitious materials solid activator hydration mechanism RETARDER retarding mechanism
下载PDF
Tensile Strain Capacity Prediction of Engineered Cementitious Composites (ECC) Using Soft Computing Techniques
6
作者 Rabar H.Faraj Hemn Unis Ahmed +2 位作者 Hardi Saadullah Fathullah Alan Saeed Abdulrahman Farid Abed 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2925-2954,共30页
Plain concrete is strong in compression but brittle in tension,having a low tensile strain capacity that can significantly degrade the long-term performance of concrete structures,even when steel reinforcing is presen... Plain concrete is strong in compression but brittle in tension,having a low tensile strain capacity that can significantly degrade the long-term performance of concrete structures,even when steel reinforcing is present.In order to address these challenges,short polymer fibers are randomly dispersed in a cement-based matrix to forma highly ductile engineered cementitious composite(ECC).Thismaterial exhibits high ductility under tensile forces,with its tensile strain being several hundred times greater than conventional concrete.Since concrete is inherently weak in tension,the tensile strain capacity(TSC)has become one of the most extensively researched properties.As a result,developing a model to predict the TSC of the ECC and to optimize the mixture proportions becomes challenging.Meanwhile,the effort required for laboratory trial batches to determine the TSC is reduced.To achieve the research objectives,five distinct models,artificial neural network(ANN),nonlinear model(NLR),linear relationship model(LR),multi-logistic model(MLR),and M5P-tree model(M5P),are investigated and employed to predict the TSCof ECCmixtures containing fly ash.Data from115 mixtures are gathered and analyzed to develop a new model.The input variables include mixture proportions,fiber length and diameter,and the time required for curing the various mixtures.The model’s effectiveness is evaluated and verified based on statistical parameters such as R2,mean absolute error(MAE),scatter index(SI),root mean squared error(RMSE),and objective function(OBJ)value.Consequently,the ANN model outperforms the others in predicting the TSC of the ECC,with RMSE,MAE,OBJ,SI,and R2 values of 0.42%,0.3%,0.33%,0.135%,and 0.98,respectively. 展开更多
关键词 Engineered cementitious composites fly ash curing time tensile strain capacity MODELING
下载PDF
Microscopic Analysis of Cementitious Sand and Gravel Damming Materia
7
作者 Ran Wang Aimin Gong +4 位作者 Shanqing Shao Baoli Qu Jing Xu Fulai Wang Feipeng Liu 《Fluid Dynamics & Materials Processing》 EI 2024年第4期749-769,共21页
The mechanical properties of cementitious sand and gravel damming material have been experimentally determined by means of microscopic SEM(Scanning Electron Microscopy)image analysis.The results show that the combinat... The mechanical properties of cementitious sand and gravel damming material have been experimentally determined by means of microscopic SEM(Scanning Electron Microscopy)image analysis.The results show that the combination of fly ash and water can fill the voids in cemented sand and gravel test blocks because of the presence of hydrated calcium silicate and other substances;thereby,the compactness and mechanical properties of these materials can be greatly improved.For every 10 kg/m^(3) increase in the amount of cementitious material,the density increases by about 2%,and the water content decreases by 0.2%.The amount of cementitious material used in the sand and gravel in these tests was 80-110 kg/m^(3),the water-binder ratio was 1-1.50.Moreover,the splitting tensile strength was 1/10 of the compressive strength,and the maximum strength was 7.42 MPa at 90 d.The optimal mix ratio has been found to be 50 kg of cement,60 kg of fly ash and 120 kg of water(C50F60W120).The related dry density was 2.6 g/cm^(3),the water content was 6%,and the water-binder ratio was 1.09. 展开更多
关键词 Cementitious sand gravel material scanning electron microscopy optimal mix ratio maximum strength
下载PDF
Preparation and Performance Study of Cementitious Capillary Crystalline Waterproof Materials
8
作者 Hui Li Yu Liu Gaoshang Zhang 《Journal of Architectural Research and Development》 2024年第3期42-52,共11页
Cementitious capillary crystalline waterproof materials(CCCW for short)offer durability and excellent waterproofing properties,making them a popular option for building waterproofing.Some scholars have studied the pro... Cementitious capillary crystalline waterproof materials(CCCW for short)offer durability and excellent waterproofing properties,making them a popular option for building waterproofing.Some scholars have studied the proportioning of such materials.However,these studies lack the relationship between the impermeability pressure of mortar and the components,and the mechanism of action is somewhat debatable.Therefore,we adopted a two-step method in our experiments.Firstly,we screened out the components that significantly impact impermeability from a variety of active components by orthogonal test.We then optimized the design of the active group ratio using the simplex lattice method.Lastly,we conducted a performance test of the optimal ratio and explored the waterproofing mechanism of homemade CCCW. 展开更多
关键词 Cementitious penetration crystalline waterproof material IMPERMEABILITY Mechanism analysis Optimization design
下载PDF
Enhanced photocatalytic performance of cementitious material with TiO_2@Ag modified fly ash micro-aggregates 被引量:5
9
作者 杨露 高衣宁 +2 位作者 王发洲 刘鹏 胡曙光 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第2期357-364,共8页
A TiO2 photocatalyst is coated on the surface of a zeolite fly ash bead(ZFAB) to improve its dispersability and exposure degree in a cement system.The application of Ag particles in TiO2/ZFAB modified cementitious m... A TiO2 photocatalyst is coated on the surface of a zeolite fly ash bead(ZFAB) to improve its dispersability and exposure degree in a cement system.The application of Ag particles in TiO2/ZFAB modified cementitious materials is to further enhance the photocatalytic performance.Various Ag@TiO2/ZFAB modified cementitious specimens with different Ag dosages are prepared and the characteristics and photocatalytic performance of the prepared samples are investigated.It is observed that the multi-level pore structure of ZFAB can improve the exposure degree of TiO2 in a cement system and is also useful to enhance the photocatalytic efficiency.With an increment of the amounts of Ag particles in the TiO2/ZFAB modified cementitious samples,the photocatalytic activities increased first and then decreased.The optimal Ag@TiO2/ZFAB modified cementitious sample reveals the maximum reaction rate constant for degrading benzene(9.91×10^-3 min^-1),which is approximately 3 and 10 times higher than those of TiO2/ZFAB and TiO2 modified samples,respectively.This suggests that suitable Ag particles coupled with a ZFAB carrier could effectively enhance the photocatalytic effects and use of TiO2 in a cement system.Thus,ZFAB as a carrier could provide a potential method for a high efficiency engineering application of TiO2 in the construction field. 展开更多
关键词 Photocatalytic cementitious materials Zeolite fly ash bead Photocatalytic effect TITANIA Silver modification
下载PDF
Experimental and numerical study on flexural behaviors of steel reinforced engineered cementitious composite beams 被引量:8
10
作者 蔡景明 潘金龙 袁方 《Journal of Southeast University(English Edition)》 EI CAS 2014年第3期330-335,共6页
To investigate the flexural behaviors of steel reinforced engineered cementitious composite (ECC) beams, the behaviors of the steel reinforced ECC beam and the conventional steel reinforced concrete beam subjected t... To investigate the flexural behaviors of steel reinforced engineered cementitious composite (ECC) beams, the behaviors of the steel reinforced ECC beam and the conventional steel reinforced concrete beam subjected to flexural load are experimentally compared. The experimental results show that the flexural strength and ductility of the steel reinforced ECC beam are 24.8% and 187.67% times larger than those of the steel reinforced concrete beam, and the substitution of concrete with ECC can significantly delay the propagation of cracks. Additionally, a simplified constitutive model of the ECC material is used to simulate the flexural behaviors of beams by the finite element analysis (FEA). The results show a good agreement between the simulation and test results. The crack width of the steel reinforced ECC beam can be limited to 0.4 mm under the service load conditions. The application of ductile ECC can significantly increase the flexural performance in terms of flexural strength, deformation capacity and ductility of the beams. 展开更多
关键词 engineered cementitious composites (ECC) DUCTILITY flexural behavior finite element
下载PDF
Development of engineered cementitious composites with local ingredients 被引量:11
11
作者 钱吮智 张志刚 《Journal of Southeast University(English Edition)》 EI CAS 2012年第3期327-330,共4页
In order to reduce the cost of high performance polyvinyl alcohol(PVA) fiber reinforced cementitious material(called engineered cementitious composites,ECC),a ductile ECC material is developed using domestic PVA f... In order to reduce the cost of high performance polyvinyl alcohol(PVA) fiber reinforced cementitious material(called engineered cementitious composites,ECC),a ductile ECC material is developed using domestic PVA fibers along with other local ingredients,such as fly ash,cement and sand.In addition to the economic analysis of ECC,the four-point bending test and the optical microscope are employed to investigate the deflection capacity of ECC,its crack width and the occurrence of the self-healing phenomenon.The experimental results suggest that ECC made with domestic ingredients exhibits larger deformability and the average crack width is controlled around 60 μm.Furthermore,the self-healing behavior is observed in cracks of the specimens after cycles of wet and dry curing.The economic analysis shows that the cost of ECC can be greatly reduced via employing domestic PVA fibers.It is,therefore,feasible to produce low cost ECC material employing domestic PVA fibers,while simultaneously retaining high material ductility. 展开更多
关键词 engineered cementitious composites(ECC) high tensile ductility material cost feasibility study
下载PDF
Fracture suppression at steel/concrete connection zones by ECC 被引量:2
12
作者 钱吮智 《Journal of Southeast University(English Edition)》 EI CAS 2012年第2期190-194,共5页
In order to avoid brittle fracture failure, a ductile engineered cementitious composite (ECC) was attempted in steel/concrete connection zones to replace normal concrete. The influence of the ECC material ductility ... In order to avoid brittle fracture failure, a ductile engineered cementitious composite (ECC) was attempted in steel/concrete connection zones to replace normal concrete. The influence of the ECC material ductility on connection failure modes and structural performance was investigated via the pushout test of stud/ECC connection, the pullout test of two-dimensional anchor bolt/ECC connection and the finite element modeling (FEM). The experimental results suggest that the micromechanically designed ECC with a tensile ductility 300 times that of normal concrete switches the brittle fracture failure mode to a ductile one in steel connection zones. This modification in material behavior leads to higher load carrying capacity and structural ductility, which is also confirmed in FEM investigation. The enhancement in structural response through material ductility engineering is expected to be applicable to a wide range of engineering structures where steel and concrete come into contact. 展开更多
关键词 engineered cementitious composite (ECC) material ductility steel/concrete interaction zones fracture suppression
下载PDF
Flexural behaviors of steel reinforced ECC/concrete composite beams 被引量:8
13
作者 董洛廷 潘金龙 +1 位作者 袁方 梁坚凝 《Journal of Southeast University(English Edition)》 EI CAS 2012年第2期195-202,共8页
An engineered cementitious composite (ECC) is introduced to partially substitute concrete in the tension zone of a reinforced concrete beam to form an ECC/reinforced concrete (RC) composite beam, which can increas... An engineered cementitious composite (ECC) is introduced to partially substitute concrete in the tension zone of a reinforced concrete beam to form an ECC/reinforced concrete (RC) composite beam, which can increase the ductility and crack resisting ability of the beam. Based on the assumption of the plane remaining plane and the simplified constitutive models of materials, the stress and strain distributions along the depth of the composite beam in different loading stages are comprehensively investigated to obtain calculation methods of the load-carrying capacities for different stages. Also, a simplified formula for the ultimate load carrying capacity is proposed according to the Chinese code for the design of concrete structures. The relationship between the moment and curvature for the composite beam is also proposed together with a simplified calculation method for ductility of the ECC/RC composite beam. Finally, the calculation method is demonstrated with the test results of a composite beam. Comparison results show that the calculation results have good consistency with the test results, proving that the proposed calculation methods are reliable with a certain theoretical significance and reference value. 展开更多
关键词 engineered cementitious composites (ECC) reinforced concrete composite beam flexural properties load carrying capacity
下载PDF
Flexural behaviors of double-reinforced ECC beams 被引量:3
14
作者 颜嫄 许赟 +1 位作者 汪逊 潘金龙 《Journal of Southeast University(English Edition)》 EI CAS 2013年第1期66-72,共7页
In order to investigate the flexural behaviors of engineered cementitious composites (ECC), theoretical and experimental researches are done on flexural doublereinforced ECC beams. Based on the assumption of the pla... In order to investigate the flexural behaviors of engineered cementitious composites (ECC), theoretical and experimental researches are done on flexural doublereinforced ECC beams. Based on the assumption of the plane section remaining plane in bending and simplified constitutive models of materials, the calculation methods of load carrying capacities for different critical stages are obtained. Then, these calculation methods are demonstrated by comparing the test results with the calculation results. Finally, based on the proposed theoretical formulae, the effects of the compression strength, compression strain and tension strength of ECC, and the reinforcement ratio on the flexural behaviors of double-reinforced ECC beams are analyzed. The calculated and measured results are in good agreement, which indicates that the theoretical model can be used to predict the momentcurvature response of steel reinforced ECC beams. And the results of parametric studies show that the increase in the compression strength of ECC can greatly improve the flexural performance of beams; the increase in the ultimate compression strain can significantly improve the ultimate curvature and ductility, but has little effect on the load bearing capacity of beams. little effect on the flexural The tensile strength of ECC has behaviors of ECC beams. The increase in the steel reinforcement ratio can lead to significant improvement of the load bearing capacity and the stiffness of beams, but a degradation of the ductility of beams. The theoretical model and parameter analysis results in this paper are instructive for the design of steel reinforced ECC beams. 展开更多
关键词 engineered cementitious composites (ECC) ultimate carrying capacity ultimate curvature DUCTILITY parametric study
下载PDF
Mechanical behaviors of steel reinforced ECC / concrete composite columns under combined vertical and horizontal loading 被引量:7
15
作者 单奇峰 潘金龙 陈俊涵 《Journal of Southeast University(English Edition)》 EI CAS 2015年第2期259-265,共7页
In order to improve the load capacity, seismic performance and performance-cost ratio of the columns, the concrete at the base of reinforced concrete (RC) columns is substituted with engineered cementitious composit... In order to improve the load capacity, seismic performance and performance-cost ratio of the columns, the concrete at the base of reinforced concrete (RC) columns is substituted with engineered cementitious composites (ECC) to form ECC/RC composite columns. Based on the existing material properties, the mechanical behaviors of the ECC columns, ECC/RC composite columns and RC columns were numerically studied under combined vertical and horizontal loading with the software of ATENA. Then, the failure mechanism of ECC columns and ECC/RC composite columns were comprehensively studied and compared with that of the RC columns. Then, the effects of the height of the ECC, the axial compression ratio, and the transverse reinforcement ratio on the mechanical behaviors of the composite or the ECC column are studied. The calculation results show that the ultimate load capacity, ductility and crack resistance of the ECC or ECC/RC composite columns are superior to those of the RC columns. The ECC/RC composite column with a height of the ECC layer of 1.2h ( h is the height of the cross section) can achieve similar mechanical properties of a full ECC column. With high shear strength, ECC can undertake the shear force and significantly reduce the amount of stirrups, avoiding construction issues and promoting its engineering application. 展开更多
关键词 engineered cementitious composites ECC ECC/RC composite columns compression-bending behavior numerical analysis parametric analysis
下载PDF
Iron ore tailings used for the preparation of cementitious material by compound thermal activation 被引量:26
16
作者 Zhong-lai Yi Heng-hu Sun +1 位作者 Xiu-quan Wei Chao Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第3期355-358,共4页
In the background of little reuse and large stockpile for iron ore tailings, iron ore tailing from Chinese Tonghua were used as raw material to prepare cementitious materials. Cementitious properties of the iron ore t... In the background of little reuse and large stockpile for iron ore tailings, iron ore tailing from Chinese Tonghua were used as raw material to prepare cementitious materials. Cementitious properties of the iron ore tailings activated by compound thermal activation were studied. Testing methods, such as XRD, TG-DTA, and IR were used for researching the phase and structure variety of the iron ore railings in the process of compound thermal activation. The results reveal that a new cementitious material that contains 30wt% of the iron ore tailings can be obtained by compounded thermal activation, whose mortar strength can come up to the standard of 42.5 cement of China. 展开更多
关键词 iron ore tailings comprehensive utilization cementitious materials thermal activation
下载PDF
Tensile and Flexural Properties of Ultra High Toughness Cemontious Composite 被引量:24
17
作者 李贺东 徐世烺 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第4期677-683,共7页
The tensile and flexural properties of polyvinyl alcohol (PVA) fiber reinforced ultra high toughness cementitious composite (UHTCC) were investigated. The composite, tested at the age of 14 d, 28 d and 56 d, shows... The tensile and flexural properties of polyvinyl alcohol (PVA) fiber reinforced ultra high toughness cementitious composite (UHTCC) were investigated. The composite, tested at the age of 14 d, 28 d and 56 d, shows extremely remarkable pseudo strain hardening behavior, saturated multiple cracking and ultra high ultimate strain capacity above 4% under uniaxial loading. Also, the corresponding crack widths are controlled under 50 um even at 56 days age. In the third point bending tests on thin plate specimens, the composite shows ultra high flexural ductility and multiple cracking on the tension surface. The high ultimate flexural strength/first tensile strength ratio of about 5 verifies the pseudo strain hardening behavior of UHTCC. SEM observation on fracture surfaces provides indirect evidence of optimal design for the composite. 展开更多
关键词 pseudo strain hardening cementitious composite multiple cracking DUCTILITY SEM
下载PDF
Mechanical properties of gangue-containing aluminosilicate based cementitious materials 被引量:14
18
作者 Huajian Li Henghu Sun +1 位作者 Xuejun Xiao Hongxia Chen 《Journal of University of Science and Technology Beijing》 CSCD 2006年第2期183-189,共7页
High performance aluminosilicate based cementitious materials were produced using calcined gangue as one of the major raw materials. The gangue was calcined at 500℃. The main constituent was calcined gangue, fly ash ... High performance aluminosilicate based cementitious materials were produced using calcined gangue as one of the major raw materials. The gangue was calcined at 500℃. The main constituent was calcined gangue, fly ash and slag, while alkali-silicate solutions were used as the diagenetic agent. The structure of gangue-containing aluminosilicate based cementitious materials was studied by the methods of IR, NMR and SEM. The results show that the mechanical properties are affected by the mass ratio between the gangue, slag and fly ash, the kind of activator and additional salt. For 28-day curing time, the compressive strength of the sample with a mass proportion of 2:1:1 (gangue: slag: fly ash) is 58.9 MPa, while the compressive strength of the sample containing 80wt% gangue can still be up to 52.3 MPa. The larger K^+ favors the formation of large silicate oligomers with which AI(OH)4- prefers to bind. Therefore, in Na-K compounding activator solutions more oligomers exist which result in a stronger compressive strength of aluminosilicate-based cementitious materials than in the case of Na-containing activator. The reasons for this were found through IR and NMR analysis. Glauber's salt reduces the 3-day compressive strength of the paste, but increases its 7-day and 28-day compressive strengths. 展开更多
关键词 GANGUE SLAG fly ash aluminosilicate based cementitious materials mechanical properties
下载PDF
Degradation behavior of concrete under corrosive coal mine environment 被引量:7
19
作者 Shuchun Zhou Henglin Lv Yuanzhou Wu 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第2期307-312,共6页
Experimental investigations were taken for the degradation of concrete under coupling effects of hydrochloric acid mist and mixed salt mist consisting of chlorine and sulfate and carbon dioxide according to coal mine ... Experimental investigations were taken for the degradation of concrete under coupling effects of hydrochloric acid mist and mixed salt mist consisting of chlorine and sulfate and carbon dioxide according to coal mine environment. Concrete specimens were subjected to four different deterioration time from 45 days to 180 days, with an interval of 45 days. The results showed that the carbonization depth of concrete increased speedy at first, then gently and then rapidly again with the change of fragility.The compressive strength of concrete increased at the initial stage of deterioration, and then decreased until the time of 135 days when they came to the second ascension of small quantity and then entered the decline trend under the coupling effect of carbonization and acid-salt attack. The elastic modulus changed slightly with the deterioration, meanwhile the fragility and ductility changed significantly before and after deterioration time of 180 days, which was identical to the failure modes. 展开更多
关键词 DETERIORATION COUPLING effects CONCRETE PROPERTIES Cementitious MATERIAL
下载PDF
Potential Use of Strain Hardening ECC in Permanent Formwork with Small Scale Flexural Beams 被引量:10
20
作者 李贺东 Christopher K Y Leung 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第3期482-487,共6页
Utilizing pre-cast ECC panels as participating permanent formwork of concrete members, and the validity of using ECC to disperse the single crack in concrete into multiple ones in ECC were studied. In the process, tot... Utilizing pre-cast ECC panels as participating permanent formwork of concrete members, and the validity of using ECC to disperse the single crack in concrete into multiple ones in ECC were studied. In the process, totally two kinds of ECC with different tensile properties, 7 series of flat panels with different top surface figures and 3 U-shape panels with different inner surface forms were investigated. To evaluate the performance of the permanent formworks, small ECC-concrete composite beams were cast and tested mechanically. The 4-point bending test results show that the use of pre-cast ECC panels as permanent formwork can significantly improve the load capacity and toughness of a concrete member, effectively dispersing single widely opened crack in concrete into multiple ones in ECC. Most permanent formworks show perfect bond with the concrete cast on them, while the ones with partially debonded zone achieve the best mechanical performance. The U-shape permanent formworks show better performances than the flat ones, achieving much betler improvements in both the load capacity and toughness, together with better crack width control. 展开更多
关键词 pseudo strain hardening cementitious composites permanent formwork TOUGHNESS CRACK
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部