In this article, a law of iterated logarithm for the maximum likelihood estimator in a random censoring model with incomplete information under certain regular conditions is obtained.
Censored regression ("Tobit") models have been in common use, and their linear hypothesis testings have been widely studied. However, the critical values of these tests are usually related to quantities of a...Censored regression ("Tobit") models have been in common use, and their linear hypothesis testings have been widely studied. However, the critical values of these tests are usually related to quantities of an unknown error distribution and estimators of nuisance parameters. In this paper, we propose a randomly weighting test statistic and take its conditional distribution as an approximation to null distribution of the test statistic. It is shown that, under both the null and local alternative hypotheses, conditionally asymptotic distribution of the randomly weighting test statistic is the same as the null distribution of the test statistic. Therefore, the critical values of the test statistic can be obtained by randomly weighting method without estimating the nuisance parameters. At the same time, we also achieve the weak consistency and asymptotic normality of the randomly weighting least absolute deviation estimate in censored regression model. Simulation studies illustrate that the per-formance of our proposed resampling test method is better than that of central chi-square distribution under the null hypothesis.展开更多
The stress-strength model is widely applied in reliability. Observations are often subject to right censoring due to some practical limitations. In such circumstances, the statistical inference for the stress-strength...The stress-strength model is widely applied in reliability. Observations are often subject to right censoring due to some practical limitations. In such circumstances, the statistical inference for the stress-strength model is demanding, although lacking. We propose a nonparametric method for the inference of the stress-strength model when the observations are subject to right censoring. The asymptotic properties are also established. The practical utility of the proposed method is assessed through both simulated and real data sets.展开更多
文摘In this article, a law of iterated logarithm for the maximum likelihood estimator in a random censoring model with incomplete information under certain regular conditions is obtained.
基金supported by National Natural Science Foundation of China (Grant No. 10471136)PhD Program Foundation of the Ministry of Education of ChinaSpecial Foundations of the Chinese Academy of Sciences and University of Science and Technology of China
文摘Censored regression ("Tobit") models have been in common use, and their linear hypothesis testings have been widely studied. However, the critical values of these tests are usually related to quantities of an unknown error distribution and estimators of nuisance parameters. In this paper, we propose a randomly weighting test statistic and take its conditional distribution as an approximation to null distribution of the test statistic. It is shown that, under both the null and local alternative hypotheses, conditionally asymptotic distribution of the randomly weighting test statistic is the same as the null distribution of the test statistic. Therefore, the critical values of the test statistic can be obtained by randomly weighting method without estimating the nuisance parameters. At the same time, we also achieve the weak consistency and asymptotic normality of the randomly weighting least absolute deviation estimate in censored regression model. Simulation studies illustrate that the per-formance of our proposed resampling test method is better than that of central chi-square distribution under the null hypothesis.
基金Supported by the National Natural Science Foundation of China(11301545,11401341,11326087)the Fundamental Research Fund for the Central Universities(31541311216)+2 种基金Scientific Research Fund of Fujian Education Department(JA13301)Qingyang Regional Technology Cooperation Planning Project(KH201304)Gansu Education Science "twelfth five-year" Planning Project(GS[2013]GHB1097)
文摘The stress-strength model is widely applied in reliability. Observations are often subject to right censoring due to some practical limitations. In such circumstances, the statistical inference for the stress-strength model is demanding, although lacking. We propose a nonparametric method for the inference of the stress-strength model when the observations are subject to right censoring. The asymptotic properties are also established. The practical utility of the proposed method is assessed through both simulated and real data sets.