In this paper, we consider the change-point estimation in the censored regression model assuming that there exists one change point. A nonparametric estimate of the change-point is proposed and is shown to be strongly...In this paper, we consider the change-point estimation in the censored regression model assuming that there exists one change point. A nonparametric estimate of the change-point is proposed and is shown to be strongly consistent. Furthermore, its convergence rate is also obtained.展开更多
Censored regression ("Tobit") models have been in common use, and their linear hypothesis testings have been widely studied. However, the critical values of these tests are usually related to quantities of a...Censored regression ("Tobit") models have been in common use, and their linear hypothesis testings have been widely studied. However, the critical values of these tests are usually related to quantities of an unknown error distribution and estimators of nuisance parameters. In this paper, we propose a randomly weighting test statistic and take its conditional distribution as an approximation to null distribution of the test statistic. It is shown that, under both the null and local alternative hypotheses, conditionally asymptotic distribution of the randomly weighting test statistic is the same as the null distribution of the test statistic. Therefore, the critical values of the test statistic can be obtained by randomly weighting method without estimating the nuisance parameters. At the same time, we also achieve the weak consistency and asymptotic normality of the randomly weighting least absolute deviation estimate in censored regression model. Simulation studies illustrate that the per-formance of our proposed resampling test method is better than that of central chi-square distribution under the null hypothesis.展开更多
Rao and Zhao (1992) used random weighting method to derive the approximate distribution of the M-estimator in linear regression model.In this paper we extend the result to the censored regression model (or censored “...Rao and Zhao (1992) used random weighting method to derive the approximate distribution of the M-estimator in linear regression model.In this paper we extend the result to the censored regression model (or censored “Tobit” model).展开更多
We investigate the finite sample performance of several estimators proposed for the panel data Tobit regression model with individual effects, including Honor6 estimator, Hansen's best two-step GMM estimator, the con...We investigate the finite sample performance of several estimators proposed for the panel data Tobit regression model with individual effects, including Honor6 estimator, Hansen's best two-step GMM estimator, the continuously updating GMM estimator, and the empirical likelihood estimator (ELE). The latter three estimators are based on more conditional moment restrictions than the Honor6 estimator, and consequently are more efficient in large samples. Although the latter three estimators are asymptotically equivalent, the last two have better finite sample performance. However, our simulation reveals that the continuously updating GMM estimator performs no better, and in most cases is worse than Honor6 estimator in small samples. The reason for this finding is that the latter three estimators are based on more moment restrictions that require discarding observations. In our designs, about seventy percent of observations are discarded. The insufficiently few number of observations leads to an imprecise weighted matrix estimate, which in turn leads to unreliable estimates. This study calls for an alternative estimation method that does not rely on trimming for finite sample panel data censored regression model.展开更多
The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software w...The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software with defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed SQADEN technique mainly includes two major processes namely metric or feature selection and classification. First, the SQADEN uses the nonparametric statistical Torgerson–Gower scaling technique for identifying the relevant software metrics by measuring the similarity using the dice coefficient. The feature selection process is used to minimize the time complexity of software fault prediction. With the selected metrics, software fault perdition with the help of the Quadratic Censored regressive convolution deep neural network-based classification. The deep learning classifier analyzes the training and testing samples using the contingency correlation coefficient. The softstep activation function is used to provide the final fault prediction results. To minimize the error, the Nelder–Mead method is applied to solve non-linear least-squares problems. Finally, accurate classification results with a minimum error are obtained at the output layer. Experimental evaluation is carried out with different quantitative metrics such as accuracy, precision, recall, F-measure, and time complexity. The analyzed results demonstrate the superior performance of our proposed SQADEN technique with maximum accuracy, sensitivity and specificity by 3%, 3%, 2% and 3% and minimum time and space by 13% and 15% when compared with the two state-of-the-art methods.展开更多
The main objective of this research is to estimate the different types of demand elasticities for the main fresh vegetables consumed in Jordan. The estimated elasticities can be used to measure the impacts of agricult...The main objective of this research is to estimate the different types of demand elasticities for the main fresh vegetables consumed in Jordan. The estimated elasticities can be used to measure the impacts of agricultural policies and can be used to predict future consumption in the context of food security in terms of access, availability, stability, and food quality. The reported demand estimates were obtained through the estimation of a Linear Approximate Almost Ideal Demand Systems (LA/AIDS) for Jordan fresh vegetable crops demand system using the most recent cross-sectional data of household expenditure survey in 2005. A censored regression method for the system of equations was used to analyze fresh vegetables consumption patterns. This method allows for inclusion of a large number of zero consumption for some foods through two-step demand system estimation. All of the own-price demand elasticities have the correct negative signs and statistically significant. According to the expenditure elasticity, tomato, cucumber, and potato are the necessity goods. The mean budget shares indicate that consumers spend 30 percent of their allocated budget to vegetables on tomatoes and potatoes. The green bean elasticity is the highest indicating that demand for beans is highly responsive to any changes in the price. The expenditure elasticities reveal that the demand on all vegetables is expected to grow over the coming few years. High own-price elasticities of all vegetables studied suggests that any changes in the prices of these crops could bring about a significant shift in fruits and vegetable constanption patterns.展开更多
We propose a two-step variable selection procedure for censored quantile regression with high dimensional predictors. To account for censoring data in high dimensional case, we employ effective dimension reduction and...We propose a two-step variable selection procedure for censored quantile regression with high dimensional predictors. To account for censoring data in high dimensional case, we employ effective dimension reduction and the ideas of informative subset idea. Under some regularity conditions, we show that our procedure enjoys the model selection consistency. Simulation study and real data analysis are conducted to evaluate the finite sample performance of the proposed approach.展开更多
基金This work was partially supported by the National Natural Science Foundation of China (Grant No. 10471136) Ph.D. Program Foundation of the Ministry of Education of ChinaSpecial Foundations of the Chinese Academy of Science and USTC.
文摘In this paper, we consider the change-point estimation in the censored regression model assuming that there exists one change point. A nonparametric estimate of the change-point is proposed and is shown to be strongly consistent. Furthermore, its convergence rate is also obtained.
基金supported by National Natural Science Foundation of China (Grant No. 10471136)PhD Program Foundation of the Ministry of Education of ChinaSpecial Foundations of the Chinese Academy of Sciences and University of Science and Technology of China
文摘Censored regression ("Tobit") models have been in common use, and their linear hypothesis testings have been widely studied. However, the critical values of these tests are usually related to quantities of an unknown error distribution and estimators of nuisance parameters. In this paper, we propose a randomly weighting test statistic and take its conditional distribution as an approximation to null distribution of the test statistic. It is shown that, under both the null and local alternative hypotheses, conditionally asymptotic distribution of the randomly weighting test statistic is the same as the null distribution of the test statistic. Therefore, the critical values of the test statistic can be obtained by randomly weighting method without estimating the nuisance parameters. At the same time, we also achieve the weak consistency and asymptotic normality of the randomly weighting least absolute deviation estimate in censored regression model. Simulation studies illustrate that the per-formance of our proposed resampling test method is better than that of central chi-square distribution under the null hypothesis.
基金This research is partially supported by National Natural Science Foundation of China(Grant No. 10171094) Ph. D. Program Foundation of the Ministry of Education of China Special Foundations of the Chinese Academy of Sciences and USTC.
文摘Rao and Zhao (1992) used random weighting method to derive the approximate distribution of the M-estimator in linear regression model.In this paper we extend the result to the censored regression model (or censored “Tobit” model).
基金We have benefited greatly from conversations with Jonathan Hamilton and seminar participants at University of Florida. This work is supported partially by the National Natural Science Foundation of China (No. 70971082).
文摘We investigate the finite sample performance of several estimators proposed for the panel data Tobit regression model with individual effects, including Honor6 estimator, Hansen's best two-step GMM estimator, the continuously updating GMM estimator, and the empirical likelihood estimator (ELE). The latter three estimators are based on more conditional moment restrictions than the Honor6 estimator, and consequently are more efficient in large samples. Although the latter three estimators are asymptotically equivalent, the last two have better finite sample performance. However, our simulation reveals that the continuously updating GMM estimator performs no better, and in most cases is worse than Honor6 estimator in small samples. The reason for this finding is that the latter three estimators are based on more moment restrictions that require discarding observations. In our designs, about seventy percent of observations are discarded. The insufficiently few number of observations leads to an imprecise weighted matrix estimate, which in turn leads to unreliable estimates. This study calls for an alternative estimation method that does not rely on trimming for finite sample panel data censored regression model.
文摘The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software with defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed SQADEN technique mainly includes two major processes namely metric or feature selection and classification. First, the SQADEN uses the nonparametric statistical Torgerson–Gower scaling technique for identifying the relevant software metrics by measuring the similarity using the dice coefficient. The feature selection process is used to minimize the time complexity of software fault prediction. With the selected metrics, software fault perdition with the help of the Quadratic Censored regressive convolution deep neural network-based classification. The deep learning classifier analyzes the training and testing samples using the contingency correlation coefficient. The softstep activation function is used to provide the final fault prediction results. To minimize the error, the Nelder–Mead method is applied to solve non-linear least-squares problems. Finally, accurate classification results with a minimum error are obtained at the output layer. Experimental evaluation is carried out with different quantitative metrics such as accuracy, precision, recall, F-measure, and time complexity. The analyzed results demonstrate the superior performance of our proposed SQADEN technique with maximum accuracy, sensitivity and specificity by 3%, 3%, 2% and 3% and minimum time and space by 13% and 15% when compared with the two state-of-the-art methods.
文摘The main objective of this research is to estimate the different types of demand elasticities for the main fresh vegetables consumed in Jordan. The estimated elasticities can be used to measure the impacts of agricultural policies and can be used to predict future consumption in the context of food security in terms of access, availability, stability, and food quality. The reported demand estimates were obtained through the estimation of a Linear Approximate Almost Ideal Demand Systems (LA/AIDS) for Jordan fresh vegetable crops demand system using the most recent cross-sectional data of household expenditure survey in 2005. A censored regression method for the system of equations was used to analyze fresh vegetables consumption patterns. This method allows for inclusion of a large number of zero consumption for some foods through two-step demand system estimation. All of the own-price demand elasticities have the correct negative signs and statistically significant. According to the expenditure elasticity, tomato, cucumber, and potato are the necessity goods. The mean budget shares indicate that consumers spend 30 percent of their allocated budget to vegetables on tomatoes and potatoes. The green bean elasticity is the highest indicating that demand for beans is highly responsive to any changes in the price. The expenditure elasticities reveal that the demand on all vegetables is expected to grow over the coming few years. High own-price elasticities of all vegetables studied suggests that any changes in the prices of these crops could bring about a significant shift in fruits and vegetable constanption patterns.
基金supported by National Natural Science Foundation of China (Grant Nos. 11401383, 11301391 and 11271080)
文摘We propose a two-step variable selection procedure for censored quantile regression with high dimensional predictors. To account for censoring data in high dimensional case, we employ effective dimension reduction and the ideas of informative subset idea. Under some regularity conditions, we show that our procedure enjoys the model selection consistency. Simulation study and real data analysis are conducted to evaluate the finite sample performance of the proposed approach.