Tuning the coordination atoms of central metal is an effective means to improve the electrocatalytic activity of atomic catalysts.Herein,iridium(Ir) is proposed to be asymmetrically anchored by sp-N and pyridinic N of...Tuning the coordination atoms of central metal is an effective means to improve the electrocatalytic activity of atomic catalysts.Herein,iridium(Ir) is proposed to be asymmetrically anchored by sp-N and pyridinic N of hydrogen-substituted graphdiyne(HsGDY),and coordinated with OH as an Ir atomic catalyst(Ir_(1)-N-HsGDY).The electron structures,especially the d-band center of Ir atom,are optimized by these specific coordination atoms.Thus,the as-synthesized Ir_(1)-N-HsGDY exhibits excellent electrocatalytic performances for oxygen reduction and hydrogen evolution reactions in both acidic and alkaline media.Benefiting from the unique structure of HsGDY,IrN_(2)(OH)_(3) has been developed and demonstrated to act as the active site in these electrochemical reactions.All those indicate the fresh role of the sp-N in graphdiyne in producing a new anchor way and contributing to promote the electrocatalytic activity,showing a new strategy to design novel electrochemical catalysts.展开更多
Development of the telencephalon relies upon several signaling centers-localized cellular populations that supply secreted factors to pattern the cortical neuroepithelium.One such signaling center is the cortical hem,...Development of the telencephalon relies upon several signaling centers-localized cellular populations that supply secreted factors to pattern the cortical neuroepithelium.One such signaling center is the cortical hem,which arises during embryonic development at the telencephalic dorsal midline,adjacent to the choroid plexus and hippocampal primordium(Figure 1A).While the cortical hem has also been described in reptiles and birds,most of our knowledge about the developmental roles of the cortical hem is derived from the analysis in mice.The cortical hem produces several types of secreted molecules,including wingless-related integration site(Wnt)and bone morphogenetic(Bmp)proteins.The cortical hem is particularly important for the development of the hippocampus,which is involved in learning and memory,and the neocortex,which is the most complex brain region that mediates multiple types of behavior and higher cognitive functions(Mangale et al.,2008;Dal-Valle-Anton and Borrell,2022).展开更多
Based on the integrated study of structure attributions and characteristics of the original basin in combination with lithology and lithofacies, sedimentary provenance analysis and thickness distribution of the Mesozo...Based on the integrated study of structure attributions and characteristics of the original basin in combination with lithology and lithofacies, sedimentary provenance analysis and thickness distribution of the Mesozoic Ordos Basin, it is demonstrated that the depocenters migrated counterclockwise from southeast to the north and then to the southwest from the Middle-Late Triassic to the Early Cretaceous. There were no unified and larger-scale accumulation centers except several small isolated accumulation centers before the Early Cretaceous. The reasons why belts of relatively thick strata were well developed in the western basin in several stages are that this area is near the west boundary of the original Ordos Basin, there was abundant sediment supply and the hydrodynamic effect was strong. Therefore, they stand for local accumulation centers. Until the Early Cretaceous, depocenters, accumulation centers and subsidence centers were superposed as an entity in the southwest part of the Ordos Basin. Up to the end of the Middle Jurassic, there still appeared a paleogeographic and paleostructural higher-in-west and lower-in-east framework in the residual basin to the west of the Yellow River. The depocenters of the Ordos Basin from the Middle-Late Triassic to the Middle Jurassic were superposed consistently. The relatively high thermal maturation of Mesozoic and Paleozoic strata in the depocenters and their neighborhood suggest active deep effects in these areas. Generally, superposition of depocenters in several periods and their consistency with high thermal evolution areas reveal the control of subsidence processes. Therefore, depocenters may represent the positions of the subsidence centers. The subsidence centers (or depocenters) are located in the south of the large-scale cratonic Ordos Basin. This is associated with flexural subsidence of the foreland, resulting from the strong convergence and orogenic activity contemporaneous with the Qinling orogeny.展开更多
Cyber physical systems(CPS) recently emerge as a new technology which can provide promising approaches to demand side management(DSM), an important capability in industrial power systems. Meanwhile, the manufactur...Cyber physical systems(CPS) recently emerge as a new technology which can provide promising approaches to demand side management(DSM), an important capability in industrial power systems. Meanwhile, the manufacturing center is a typical industrial power subsystem with dozens of high energy consumption devices which have complex physical dynamics. DSM, integrated with CPS, is an effective methodology for solving energy optimization problems in manufacturing center. This paper presents a prediction-based manufacturing center self-adaptive energy optimization method for demand side management in cyber physical systems. To gain prior knowledge of DSM operating results, a sparse Bayesian learning based componential forecasting method is introduced to predict 24-hour electric load levels for specific industrial areas in China. From this data, a pricing strategy is designed based on short-term load forecasting results. To minimize total energy costs while guaranteeing manufacturing center service quality, an adaptive demand side energy optimization algorithm is presented. The proposed scheme is tested in a machining center energy optimization experiment. An AMI sensing system is then used to measure the demand side energy consumption of the manufacturing center. Based on the data collected from the sensing system, the load prediction-based energy optimization scheme is implemented. By employing both the PSO and the CPSO method, the problem of DSM in the manufac^ring center is solved. The results of the experiment show the self-adaptive CPSO energy optimization method enhances optimization by 5% compared with the traditional PSO optimization method.展开更多
The center cutter of a hard rock tunnel boring machine(TBM) is installed on the cutterhead at a small radius and thus bears complex side force.Given this fact,the formation mechanism and change law of the side force s...The center cutter of a hard rock tunnel boring machine(TBM) is installed on the cutterhead at a small radius and thus bears complex side force.Given this fact,the formation mechanism and change law of the side force suffered by the center cutter were studied.Based on the rock shear failure criterion in combination with the lateral rolling width,a model for predicting the average side force was set up.Besides,a numerical analysis model of the rock fragmentation of the center cutter was established,and the instantaneous load changing features were investigated.Results shows that the inner side of the center cutter can form lateral rolling annulus in rock during the rotary cutting process.The smaller the installation radius is,the greater the cutter side force will be.In a working condition,the side force of the innermost center cutter is 11.66 k N,while it decreases sharply when installation radius increases.Variation tends to be gentle when installation radius is larger than 500 mm,and the side force of the outermost center cutter is reduced to 0.74 k N.展开更多
The diamond anvil cell-based high-pressure technique is a unique tool for creating new states of matter and for understanding the physics underlying some exotic phenomena.In situ sensing of spin and charge properties ...The diamond anvil cell-based high-pressure technique is a unique tool for creating new states of matter and for understanding the physics underlying some exotic phenomena.In situ sensing of spin and charge properties under high pressure is crucially important but remains technically challenging.While the nitrogen-vacancy(NV)center in diamond is a promising quantum sensor under extreme conditions,its spin dynamics and the quantum control of its spin states under high pressure remain elusive.In this study,we demonstrate coherent control,spin relaxation,and spin dephasing measurements for ensemble NV centers up to 32.8 GPa.With this in situ quantum sensor,we investigate the pressure-induced magnetic phase transition of a micron-size permanent magnet Nd2Fe14B sample in a diamond anvil cell,with a spatial resolution of ~2μm,and sensitivity of ~20 μT/Hz1/2. This scheme could be generalized to measure other parameters such as temperature,pressure and their gradients under extreme conditions.This will be beneficial for frontier research of condensed matter physics and geophysics.展开更多
With regard to the inferior techniques and low accuracy of phase center calibration of an antenna array, this paper proposes a new calibration method considering the actual antenna pointing by introducing a precise en...With regard to the inferior techniques and low accuracy of phase center calibration of an antenna array, this paper proposes a new calibration method considering the actual antenna pointing by introducing a precise engineering surveying technique to measure the real state of antennas. First, an industrial photogrammetric system is utilized to obtain the coordinates of points on antenna panels in different postures, and the actual pointing of the mechanical axis is obtained via least-squares fitting. Then, based on this, the coordinates of antenna rotation center are obtained by seeking the intersection of mechanical axes via using the matrix method. Finally, the mechanical axis in arbitrary postures is estimated based on the inverse-angle weighting interpolation method, and the reliable phase center is obtained by moving a fixed length from the projective center along the mechanical axis. An uplink antenna array including three ? 3 m antennas is taken as experimental object, and all photogrammetric coordinate systems are unified by the engineering control network, with each antenna phase center precisely calibrated via the proposed method. The results of electrical signal synthesis indicate that this method can effectively overcome the influence of gravity deformation and mechanical installation error, and enhance the synthetic signal magnitude of the uplink antenna array.展开更多
Analysis of customers' satisfaction provides a guarantee to improve the service quality in call centers.In this paper,a novel satisfaction recognition framework is introduced to analyze the customers' satisfaction.I...Analysis of customers' satisfaction provides a guarantee to improve the service quality in call centers.In this paper,a novel satisfaction recognition framework is introduced to analyze the customers' satisfaction.In natural conversations,the interaction between a customer and its agent take place more than once.One of the difficulties insatisfaction analysis at call centers is that not all conversation turns exhibit customer satisfaction or dissatisfaction. To solve this problem,an intelligent system is proposed that utilizes acoustic features to recognize customers' emotion and utilizes the global features of emotion and duration to analyze the satisfaction. Experiments on real-call data show that the proposed system offers a significantly higher accuracy in analyzing the satisfaction than the baseline system. The average F value is improved to 0. 701 from 0. 664.展开更多
The structural evolution of Typhoon Morakot(2009) during its passage across Taiwan was investigated with the WRF model. When Morakot approached eastern Taiwan, the low-level center was gradually filled by the Centra...The structural evolution of Typhoon Morakot(2009) during its passage across Taiwan was investigated with the WRF model. When Morakot approached eastern Taiwan, the low-level center was gradually filled by the Central Mountain Range(CMR), while the outer wind had flowed around the northern tip of the CMR and met the southwesterly monsoon to result in a strong confluent flow over the southern Taiwan Strait. When the confluent flow was blocked by the southern CMR, a secondary center(SC) without a warm core formed over southwestern Taiwan. During the northward movement of the SC along the west slope of the CMR, the warm air produced within the wake flow over the northwestern CMR was continuously advected into the SC, contributing to the generation of a warm core inside the SC. Consequently, a well-defined SC with a warm core, closed circulation and almost symmetric structure was produced over central western Taiwan, and then it coupled with Morakot's mid-level center after crossing the CMR to reestablish a new and vertically stacked typhoon. Therefore, the SC inside Morakot was initially generated by a dynamic interaction among the TC's cyclonic wind, southwesterly wind and orographic effects of the CMR, while the thermodynamic process associated with the downslope adiabatic warming effect documented by previous studies supported its development to be a well-defined SC. In summary, the evolution of the SC in this study is not in contradiction with previous studies, but just a complement, especially in the initial formation stage.展开更多
Relationship between the activity for photocatalytic H_(2)O overall splitting(HOS)and the electron occupancy on d orbits of the active component in photocatalysts shows volcanic diagram,and specially the d^(10)electro...Relationship between the activity for photocatalytic H_(2)O overall splitting(HOS)and the electron occupancy on d orbits of the active component in photocatalysts shows volcanic diagram,and specially the d^(10)electronic configuration in valley bottom exhibits inert activity,which seriously fetters the development of catalytic materials with great potentials.Herein,In d^(10)electronic configuration of In_(2)O_(3)was activated by phosphorus atoms replacing its lattice oxygen to regulate the collocation of the ascended In 5p-band(Inɛ5p)and descended O 2p-band(Oɛ2p)centers as efficient active sites for chemisorption to*OH and*H during forward HOS,respectively,along with a declined In 4d-band center(Inɛ4d)to inhibit its backward reaction.A stable STH efficiency of 2.23%under AM 1.5 G irradiation at 65°C has been obtained over the activated d^(10)electronic configuration with a lowered activation energy for H_(2)evolution,verified by femtosecond transient absorption spectroscopy,in situ diffuse reflectance infrared Fourier transform spectroscopy and theoretical calculations of dynamics.These findings devote to activating d^(10)electronic configuration for resolving the reaction energy barrier and dynamical bottleneck of forward HOS,which expands the exploration of high-efficiency catalytic materials.展开更多
In this paper,we give the necessary and sufficient conditions for a class of higher degree polynomial systems to have a uniform isochronous center.At the same time,we prove that for this system the composition conject...In this paper,we give the necessary and sufficient conditions for a class of higher degree polynomial systems to have a uniform isochronous center.At the same time,we prove that for this system the composition conjecture is correct.展开更多
Phosphate removal is crucial for eutrophication control and water quality improvement.Electro-assisted adsorption,an eco-friendly elec-trosorption process,exhibited a promising potential for wastewater treatment.Howev...Phosphate removal is crucial for eutrophication control and water quality improvement.Electro-assisted adsorption,an eco-friendly elec-trosorption process,exhibited a promising potential for wastewater treatment.However,there are few works focused on phosphate electro-sorption,and reported electrodes cannot attach satisfactory removal capacities and rates.Herein,electro-assisted adsorption of phosphate via in-situ construction of La active centers on hierarchically porous carbon(LaPC)has been originally demonstrated.The resulted LaPC composite not only possessed a hierarchically porous structure with uniformly dispersed La active sites,but also provided good conductivity for interfacial electron transfer.The LaPC electrode achieved an ultrahigh phosphate electrosorption capability of 462.01 mg g^(-1) at 1 V,outperforming most existing electrodes.The superior phosphate removal performance originates from abundant active centers formed by the coupling of electricfield and capture sites.Besides,the stability and selectivity toward phosphate capture were maintained well even under comprehensive conditions.Moreover,a series of kinetics and isotherms models were employed to validate the electrosorption process.This work demonstrates a deep understanding and promotes a new level of phosphate electrosorption.展开更多
A nanodiamond with an embedded nitrogen-vacancy(NV)center is one of the experimental systems that can be coherently manipulated within current technologies.Entanglement between NV center electron spin and mechanical r...A nanodiamond with an embedded nitrogen-vacancy(NV)center is one of the experimental systems that can be coherently manipulated within current technologies.Entanglement between NV center electron spin and mechanical rotation of the nanodiamond plays a fundamental role in building a quantum network connecting these microscopic and mesoscopic degrees of motions.Here we present a protocol to asymptotically prepare a highly entangled state of the total quantum angular momentum and electron spin by adiabatically boosting the external magnetic field.展开更多
An integrated quantum probe for magnetic field imaging is proposed,where the nitrogen–vacancy(NV)center fixed at the fiber tip is located on the periphery of flexible ring resonator.Using flexible polyimide(PI)as the...An integrated quantum probe for magnetic field imaging is proposed,where the nitrogen–vacancy(NV)center fixed at the fiber tip is located on the periphery of flexible ring resonator.Using flexible polyimide(PI)as the substrate medium,we design a circular microstrip antenna,which can achieve a bandwidth of 140 MHz at Zeeman splitting frequency of 2.87 GHz,specifically suitable for NV center experiments.Subsequently,this antenna is seamlessly fixed at a three-dimensional-printed cylindrical support,allowing the optical fiber tip to extend out of a dedicated aperture.To mitigate errors originating from processing,precise tuning within a narrow range can be achieved by adjusting the conformal amplitude.Finally,we image the microwave magnetic field around the integrated probe with high resolution,and determine the suitable area for placing the fiber tip(SAP).展开更多
The hearing status of children should be examined throughout early childhood,even if they have passed the newborn hearing loss because hearing loss can occur at any time and may affect their ability to learn.Preschool...The hearing status of children should be examined throughout early childhood,even if they have passed the newborn hearing loss because hearing loss can occur at any time and may affect their ability to learn.Preschool hearing screening(PHS)is vital to continue screening throughout early childhood.The current practice of PHS in the primary healthcare centers(PHCs)in Saudi Arabia is unknown.The purpose of this study was to investigate PHS in the PHCs.This cross-sectional descriptive study used an in-person-administered questionnaire to collect data.A total of 106 out of 120 participants(male=61;female=45)representing the PHCs in Riyadh were interviewed.Most of the participants were aged 31–40 years and held a bachelor’s degree as the highest academic qualification with limited years of experience.PHS was mostly performed through subjective measures by asking the parents(71.7%)and the child(65.1%).The audiometric evaluation was conducted for preschool children in only half of the PHCs.General practitioners and nurses usually perform PHS.Substantial gaps in the practice of PHS were identified.The lack of training and appropriate instruments and the need for audiological services were the main challenges.Incorporating robust and objective protocols for PHS into the educational system is a valuable strategy for identifying hearing loss early and reducing its impact through the establishment of effective intervention plans.展开更多
The 6th generation mobile networks(6G)network is a kind of multi-network interconnection and multi-scenario coexistence network,where multiple network domains break the original fixed boundaries to form connections an...The 6th generation mobile networks(6G)network is a kind of multi-network interconnection and multi-scenario coexistence network,where multiple network domains break the original fixed boundaries to form connections and convergence.In this paper,with the optimization objective of maximizing network utility while ensuring flows performance-centric weighted fairness,this paper designs a reinforcement learning-based cloud-edge autonomous multi-domain data center network architecture that achieves single-domain autonomy and multi-domain collaboration.Due to the conflict between the utility of different flows,the bandwidth fairness allocation problem for various types of flows is formulated by considering different defined reward functions.Regarding the tradeoff between fairness and utility,this paper deals with the corresponding reward functions for the cases where the flows undergo abrupt changes and smooth changes in the flows.In addition,to accommodate the Quality of Service(QoS)requirements for multiple types of flows,this paper proposes a multi-domain autonomous routing algorithm called LSTM+MADDPG.Introducing a Long Short-Term Memory(LSTM)layer in the actor and critic networks,more information about temporal continuity is added,further enhancing the adaptive ability changes in the dynamic network environment.The LSTM+MADDPG algorithm is compared with the latest reinforcement learning algorithm by conducting experiments on real network topology and traffic traces,and the experimental results show that LSTM+MADDPG improves the delay convergence speed by 14.6%and delays the start moment of packet loss by 18.2%compared with other algorithms.展开更多
Since the D-band center theory was proposed,it has been widely used in the fields of surface chemistry by almost all researchers,due to its easy understanding,convenient operation and relative accuracy.However,with th...Since the D-band center theory was proposed,it has been widely used in the fields of surface chemistry by almost all researchers,due to its easy understanding,convenient operation and relative accuracy.However,with the continuous development of material systems and modification strategies,researchers have gradually found that D-band center theory is usually effective for large metal particle systems,but for small metal particle systems or semiconductors,such as single atom systems,the opposite conclusion to the D-band center theory is often obtained.To solve the issue above,here we propose a bonding and anti-bonding orbitals stable electron intensity difference(BASED)theory for surface chemistry.The newly-proposed BASED theory can not only successfully explain the abnormal phenomena of D-band center theory,but also exhibits a higher accuracy for prediction of adsorption energy and bond length of intermediates on active sites.Importantly,a new phenomenon of the spin transition state in the adsorption process is observed based on the BASED theory,where the active center atom usually yields an unstable high spin transition state to enhance its adsorption capability in the adsorption process of intermediates when their distance is about 2.5Å.In short,the BASED theory can be considered as a general principle to understand catalytic mechanism of intermediates on surfaces.展开更多
Objective:To evaluate the application value of a refined quality control management model for a sterilization supply center.Methods:A retrospective analysis was conducted on the work situation of the sterilization sup...Objective:To evaluate the application value of a refined quality control management model for a sterilization supply center.Methods:A retrospective analysis was conducted on the work situation of the sterilization supply center from January 2021 to January 2023.The work situation before January 31,2022,was classified as the control group;a routine quality control management model was implemented,and the work situation after January 31,2022,was classified as the observation group.The quality of medical device management and department satisfaction between the two groups were compared.Results:The timely recovery and supply rate,classification and cleaning pass rate,disinfection pass rate,packaging pass rate,sterilization pass rate,and department satisfaction score in the observation group were all higher than those of the control group(P<0.05).Conclusion:Implementing a refined quality control management model in the sterilization supply center can improve the quality management level of medical devices and department satisfaction and is worthy of promotion.展开更多
Entanglement in macroscopic systems,as a fundamental quantum resource,has been utilized to propel the advancement of quantum technology and probe the boundary between the quantum and classical realms.This study focuse...Entanglement in macroscopic systems,as a fundamental quantum resource,has been utilized to propel the advancement of quantum technology and probe the boundary between the quantum and classical realms.This study focuses on a unique hybrid quantum system comprising of an ensemble of silicon vacancy(SiV)centers coupled to phononic waveguides in diamond via strain interactions.By employing two sets of time-dependent,non-overlapping driving fields,we investigate the generation process and dynamic properties of macroscopic quantum entanglement,providing fresh insights into the behavior of such hybrid quantum systems.Furthermore,it paves the way for new possibilities in utilizing quantum entanglement as an information carrier in quantum information processing and quantum communication.展开更多
Cloud Datacenter Network(CDN)providers usually have the option to scale their network structures to allow for far more resource capacities,though such scaling options may come with exponential costs that contradict th...Cloud Datacenter Network(CDN)providers usually have the option to scale their network structures to allow for far more resource capacities,though such scaling options may come with exponential costs that contradict their utility objectives.Yet,besides the cost of the physical assets and network resources,such scaling may also imposemore loads on the electricity power grids to feed the added nodes with the required energy to run and cool,which comes with extra costs too.Thus,those CDNproviders who utilize their resources better can certainly afford their services at lower price-units when compared to others who simply choose the scaling solutions.Resource utilization is a quite challenging process;indeed,clients of CDNs usually tend to exaggerate their true resource requirements when they lease their resources.Service providers are committed to their clients with Service Level Agreements(SLAs).Therefore,any amendment to the resource allocations needs to be approved by the clients first.In this work,we propose deploying a Stackelberg leadership framework to formulate a negotiation game between the cloud service providers and their client tenants.Through this,the providers seek to retrieve those leased unused resources from their clients.Cooperation is not expected from the clients,and they may ask high price units to return their extra resources to the provider’s premises.Hence,to motivate cooperation in such a non-cooperative game,as an extension to theVickery auctions,we developed an incentive-compatible pricingmodel for the returned resources.Moreover,we also proposed building a behavior belief function that shapes the way of negotiation and compensation for each client.Compared to other benchmark models,the assessment results showthat our proposed models provide for timely negotiation schemes,allowing for better resource utilization rates,higher utilities,and grid-friend CDNs.展开更多
基金supported by the National Natural Science Foundation of China(22172090,21790051)the National Key Research and Development Project of China(2022YFA1204500,2022YFA1204501)+2 种基金the Natural Science Foundation of Shan-dong Province(ZR2021MB015)the Open Funds of the State Key Laboratory of Electroanalytical Chemistry(SKLEAC202202)the Young Scholars Program of Shandong University。
文摘Tuning the coordination atoms of central metal is an effective means to improve the electrocatalytic activity of atomic catalysts.Herein,iridium(Ir) is proposed to be asymmetrically anchored by sp-N and pyridinic N of hydrogen-substituted graphdiyne(HsGDY),and coordinated with OH as an Ir atomic catalyst(Ir_(1)-N-HsGDY).The electron structures,especially the d-band center of Ir atom,are optimized by these specific coordination atoms.Thus,the as-synthesized Ir_(1)-N-HsGDY exhibits excellent electrocatalytic performances for oxygen reduction and hydrogen evolution reactions in both acidic and alkaline media.Benefiting from the unique structure of HsGDY,IrN_(2)(OH)_(3) has been developed and demonstrated to act as the active site in these electrochemical reactions.All those indicate the fresh role of the sp-N in graphdiyne in producing a new anchor way and contributing to promote the electrocatalytic activity,showing a new strategy to design novel electrochemical catalysts.
基金supported by R01 NS093009 grant from NIH(to VVC).
文摘Development of the telencephalon relies upon several signaling centers-localized cellular populations that supply secreted factors to pattern the cortical neuroepithelium.One such signaling center is the cortical hem,which arises during embryonic development at the telencephalic dorsal midline,adjacent to the choroid plexus and hippocampal primordium(Figure 1A).While the cortical hem has also been described in reptiles and birds,most of our knowledge about the developmental roles of the cortical hem is derived from the analysis in mice.The cortical hem produces several types of secreted molecules,including wingless-related integration site(Wnt)and bone morphogenetic(Bmp)proteins.The cortical hem is particularly important for the development of the hippocampus,which is involved in learning and memory,and the neocortex,which is the most complex brain region that mediates multiple types of behavior and higher cognitive functions(Mangale et al.,2008;Dal-Valle-Anton and Borrell,2022).
基金supported by the National Basic Research Program of China(Grant No.2003CB214600)China Postdoctoral Science Foundation(Grant No.20080431246)the Program for Changjiang scholars and Innovative Research Team in University(Grant No.IRT0559).
文摘Based on the integrated study of structure attributions and characteristics of the original basin in combination with lithology and lithofacies, sedimentary provenance analysis and thickness distribution of the Mesozoic Ordos Basin, it is demonstrated that the depocenters migrated counterclockwise from southeast to the north and then to the southwest from the Middle-Late Triassic to the Early Cretaceous. There were no unified and larger-scale accumulation centers except several small isolated accumulation centers before the Early Cretaceous. The reasons why belts of relatively thick strata were well developed in the western basin in several stages are that this area is near the west boundary of the original Ordos Basin, there was abundant sediment supply and the hydrodynamic effect was strong. Therefore, they stand for local accumulation centers. Until the Early Cretaceous, depocenters, accumulation centers and subsidence centers were superposed as an entity in the southwest part of the Ordos Basin. Up to the end of the Middle Jurassic, there still appeared a paleogeographic and paleostructural higher-in-west and lower-in-east framework in the residual basin to the west of the Yellow River. The depocenters of the Ordos Basin from the Middle-Late Triassic to the Middle Jurassic were superposed consistently. The relatively high thermal maturation of Mesozoic and Paleozoic strata in the depocenters and their neighborhood suggest active deep effects in these areas. Generally, superposition of depocenters in several periods and their consistency with high thermal evolution areas reveal the control of subsidence processes. Therefore, depocenters may represent the positions of the subsidence centers. The subsidence centers (or depocenters) are located in the south of the large-scale cratonic Ordos Basin. This is associated with flexural subsidence of the foreland, resulting from the strong convergence and orogenic activity contemporaneous with the Qinling orogeny.
基金Supported by National Natural Science Foundation of China(Grant No.61272428)PhD Programs Foundation of Ministry of Education of China(Grant No.20120002110067)
文摘Cyber physical systems(CPS) recently emerge as a new technology which can provide promising approaches to demand side management(DSM), an important capability in industrial power systems. Meanwhile, the manufacturing center is a typical industrial power subsystem with dozens of high energy consumption devices which have complex physical dynamics. DSM, integrated with CPS, is an effective methodology for solving energy optimization problems in manufacturing center. This paper presents a prediction-based manufacturing center self-adaptive energy optimization method for demand side management in cyber physical systems. To gain prior knowledge of DSM operating results, a sparse Bayesian learning based componential forecasting method is introduced to predict 24-hour electric load levels for specific industrial areas in China. From this data, a pricing strategy is designed based on short-term load forecasting results. To minimize total energy costs while guaranteeing manufacturing center service quality, an adaptive demand side energy optimization algorithm is presented. The proposed scheme is tested in a machining center energy optimization experiment. An AMI sensing system is then used to measure the demand side energy consumption of the manufacturing center. Based on the data collected from the sensing system, the load prediction-based energy optimization scheme is implemented. By employing both the PSO and the CPSO method, the problem of DSM in the manufac^ring center is solved. The results of the experiment show the self-adaptive CPSO energy optimization method enhances optimization by 5% compared with the traditional PSO optimization method.
基金Project (2013CB035401) supported by the National Basic Research Program of ChinaProject (51475478) supported by the National Natural Science Foundation of ChinaProject (2012AA041803) supported by the High-Tech Research and Development Program of China
文摘The center cutter of a hard rock tunnel boring machine(TBM) is installed on the cutterhead at a small radius and thus bears complex side force.Given this fact,the formation mechanism and change law of the side force suffered by the center cutter were studied.Based on the rock shear failure criterion in combination with the lateral rolling width,a model for predicting the average side force was set up.Besides,a numerical analysis model of the rock fragmentation of the center cutter was established,and the instantaneous load changing features were investigated.Results shows that the inner side of the center cutter can form lateral rolling annulus in rock during the rotary cutting process.The smaller the installation radius is,the greater the cutter side force will be.In a working condition,the side force of the innermost center cutter is 11.66 k N,while it decreases sharply when installation radius increases.Variation tends to be gentle when installation radius is larger than 500 mm,and the side force of the outermost center cutter is reduced to 0.74 k N.
基金Supported by the National Basic Research Program of China under Grant No 2015CB921103the National Key R&D Program of China under Grant No 2016YFA0401503+2 种基金the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDB28000000the National Natural Science Foundation of China under Grant Nos 11574386,11575288 and 51402350the Youth Innovation Promotion Association of Chinese Academy of Sciences under Grant No 2016006
文摘The diamond anvil cell-based high-pressure technique is a unique tool for creating new states of matter and for understanding the physics underlying some exotic phenomena.In situ sensing of spin and charge properties under high pressure is crucially important but remains technically challenging.While the nitrogen-vacancy(NV)center in diamond is a promising quantum sensor under extreme conditions,its spin dynamics and the quantum control of its spin states under high pressure remain elusive.In this study,we demonstrate coherent control,spin relaxation,and spin dephasing measurements for ensemble NV centers up to 32.8 GPa.With this in situ quantum sensor,we investigate the pressure-induced magnetic phase transition of a micron-size permanent magnet Nd2Fe14B sample in a diamond anvil cell,with a spatial resolution of ~2μm,and sensitivity of ~20 μT/Hz1/2. This scheme could be generalized to measure other parameters such as temperature,pressure and their gradients under extreme conditions.This will be beneficial for frontier research of condensed matter physics and geophysics.
文摘With regard to the inferior techniques and low accuracy of phase center calibration of an antenna array, this paper proposes a new calibration method considering the actual antenna pointing by introducing a precise engineering surveying technique to measure the real state of antennas. First, an industrial photogrammetric system is utilized to obtain the coordinates of points on antenna panels in different postures, and the actual pointing of the mechanical axis is obtained via least-squares fitting. Then, based on this, the coordinates of antenna rotation center are obtained by seeking the intersection of mechanical axes via using the matrix method. Finally, the mechanical axis in arbitrary postures is estimated based on the inverse-angle weighting interpolation method, and the reliable phase center is obtained by moving a fixed length from the projective center along the mechanical axis. An uplink antenna array including three ? 3 m antennas is taken as experimental object, and all photogrammetric coordinate systems are unified by the engineering control network, with each antenna phase center precisely calibrated via the proposed method. The results of electrical signal synthesis indicate that this method can effectively overcome the influence of gravity deformation and mechanical installation error, and enhance the synthetic signal magnitude of the uplink antenna array.
基金Supported by the National Natural Science Foundation of China(61473041,61571044,11590772)
文摘Analysis of customers' satisfaction provides a guarantee to improve the service quality in call centers.In this paper,a novel satisfaction recognition framework is introduced to analyze the customers' satisfaction.In natural conversations,the interaction between a customer and its agent take place more than once.One of the difficulties insatisfaction analysis at call centers is that not all conversation turns exhibit customer satisfaction or dissatisfaction. To solve this problem,an intelligent system is proposed that utilizes acoustic features to recognize customers' emotion and utilizes the global features of emotion and duration to analyze the satisfaction. Experiments on real-call data show that the proposed system offers a significantly higher accuracy in analyzing the satisfaction than the baseline system. The average F value is improved to 0. 701 from 0. 664.
基金jointly supported by the Key Program for International S&T Cooperation Projects of China(Grant NO.2017YFE0107700)the National Natural Science Foundation of China(Grant No.41405051,41475059,41475060,41675044 and 41775064)the Typhoon Scientific and Technological Innovation Group of Shanghai Meteorological Service
文摘The structural evolution of Typhoon Morakot(2009) during its passage across Taiwan was investigated with the WRF model. When Morakot approached eastern Taiwan, the low-level center was gradually filled by the Central Mountain Range(CMR), while the outer wind had flowed around the northern tip of the CMR and met the southwesterly monsoon to result in a strong confluent flow over the southern Taiwan Strait. When the confluent flow was blocked by the southern CMR, a secondary center(SC) without a warm core formed over southwestern Taiwan. During the northward movement of the SC along the west slope of the CMR, the warm air produced within the wake flow over the northwestern CMR was continuously advected into the SC, contributing to the generation of a warm core inside the SC. Consequently, a well-defined SC with a warm core, closed circulation and almost symmetric structure was produced over central western Taiwan, and then it coupled with Morakot's mid-level center after crossing the CMR to reestablish a new and vertically stacked typhoon. Therefore, the SC inside Morakot was initially generated by a dynamic interaction among the TC's cyclonic wind, southwesterly wind and orographic effects of the CMR, while the thermodynamic process associated with the downslope adiabatic warming effect documented by previous studies supported its development to be a well-defined SC. In summary, the evolution of the SC in this study is not in contradiction with previous studies, but just a complement, especially in the initial formation stage.
文摘Relationship between the activity for photocatalytic H_(2)O overall splitting(HOS)and the electron occupancy on d orbits of the active component in photocatalysts shows volcanic diagram,and specially the d^(10)electronic configuration in valley bottom exhibits inert activity,which seriously fetters the development of catalytic materials with great potentials.Herein,In d^(10)electronic configuration of In_(2)O_(3)was activated by phosphorus atoms replacing its lattice oxygen to regulate the collocation of the ascended In 5p-band(Inɛ5p)and descended O 2p-band(Oɛ2p)centers as efficient active sites for chemisorption to*OH and*H during forward HOS,respectively,along with a declined In 4d-band center(Inɛ4d)to inhibit its backward reaction.A stable STH efficiency of 2.23%under AM 1.5 G irradiation at 65°C has been obtained over the activated d^(10)electronic configuration with a lowered activation energy for H_(2)evolution,verified by femtosecond transient absorption spectroscopy,in situ diffuse reflectance infrared Fourier transform spectroscopy and theoretical calculations of dynamics.These findings devote to activating d^(10)electronic configuration for resolving the reaction energy barrier and dynamical bottleneck of forward HOS,which expands the exploration of high-efficiency catalytic materials.
基金Supported by the National Natural Science Foundation of China(62173292,12171418).
文摘In this paper,we give the necessary and sufficient conditions for a class of higher degree polynomial systems to have a uniform isochronous center.At the same time,we prove that for this system the composition conjecture is correct.
基金This work is financially supported by the National Science Foundation of Tianjin(17JCYBJC23300).
文摘Phosphate removal is crucial for eutrophication control and water quality improvement.Electro-assisted adsorption,an eco-friendly elec-trosorption process,exhibited a promising potential for wastewater treatment.However,there are few works focused on phosphate electro-sorption,and reported electrodes cannot attach satisfactory removal capacities and rates.Herein,electro-assisted adsorption of phosphate via in-situ construction of La active centers on hierarchically porous carbon(LaPC)has been originally demonstrated.The resulted LaPC composite not only possessed a hierarchically porous structure with uniformly dispersed La active sites,but also provided good conductivity for interfacial electron transfer.The LaPC electrode achieved an ultrahigh phosphate electrosorption capability of 462.01 mg g^(-1) at 1 V,outperforming most existing electrodes.The superior phosphate removal performance originates from abundant active centers formed by the coupling of electricfield and capture sites.Besides,the stability and selectivity toward phosphate capture were maintained well even under comprehensive conditions.Moreover,a series of kinetics and isotherms models were employed to validate the electrosorption process.This work demonstrates a deep understanding and promotes a new level of phosphate electrosorption.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2021YFA0718302 and 2021YFA1402104)the National Natural Science Foundation of China(Grant No.12075310)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000).
文摘A nanodiamond with an embedded nitrogen-vacancy(NV)center is one of the experimental systems that can be coherently manipulated within current technologies.Entanglement between NV center electron spin and mechanical rotation of the nanodiamond plays a fundamental role in building a quantum network connecting these microscopic and mesoscopic degrees of motions.Here we present a protocol to asymptotically prepare a highly entangled state of the total quantum angular momentum and electron spin by adiabatically boosting the external magnetic field.
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFB2012600)the Science and Technology Plan Project of State Administration of Market Regulation,China(Grant No.2021MK039)。
文摘An integrated quantum probe for magnetic field imaging is proposed,where the nitrogen–vacancy(NV)center fixed at the fiber tip is located on the periphery of flexible ring resonator.Using flexible polyimide(PI)as the substrate medium,we design a circular microstrip antenna,which can achieve a bandwidth of 140 MHz at Zeeman splitting frequency of 2.87 GHz,specifically suitable for NV center experiments.Subsequently,this antenna is seamlessly fixed at a three-dimensional-printed cylindrical support,allowing the optical fiber tip to extend out of a dedicated aperture.To mitigate errors originating from processing,precise tuning within a narrow range can be achieved by adjusting the conformal amplitude.Finally,we image the microwave magnetic field around the integrated probe with high resolution,and determine the suitable area for placing the fiber tip(SAP).
文摘The hearing status of children should be examined throughout early childhood,even if they have passed the newborn hearing loss because hearing loss can occur at any time and may affect their ability to learn.Preschool hearing screening(PHS)is vital to continue screening throughout early childhood.The current practice of PHS in the primary healthcare centers(PHCs)in Saudi Arabia is unknown.The purpose of this study was to investigate PHS in the PHCs.This cross-sectional descriptive study used an in-person-administered questionnaire to collect data.A total of 106 out of 120 participants(male=61;female=45)representing the PHCs in Riyadh were interviewed.Most of the participants were aged 31–40 years and held a bachelor’s degree as the highest academic qualification with limited years of experience.PHS was mostly performed through subjective measures by asking the parents(71.7%)and the child(65.1%).The audiometric evaluation was conducted for preschool children in only half of the PHCs.General practitioners and nurses usually perform PHS.Substantial gaps in the practice of PHS were identified.The lack of training and appropriate instruments and the need for audiological services were the main challenges.Incorporating robust and objective protocols for PHS into the educational system is a valuable strategy for identifying hearing loss early and reducing its impact through the establishment of effective intervention plans.
文摘The 6th generation mobile networks(6G)network is a kind of multi-network interconnection and multi-scenario coexistence network,where multiple network domains break the original fixed boundaries to form connections and convergence.In this paper,with the optimization objective of maximizing network utility while ensuring flows performance-centric weighted fairness,this paper designs a reinforcement learning-based cloud-edge autonomous multi-domain data center network architecture that achieves single-domain autonomy and multi-domain collaboration.Due to the conflict between the utility of different flows,the bandwidth fairness allocation problem for various types of flows is formulated by considering different defined reward functions.Regarding the tradeoff between fairness and utility,this paper deals with the corresponding reward functions for the cases where the flows undergo abrupt changes and smooth changes in the flows.In addition,to accommodate the Quality of Service(QoS)requirements for multiple types of flows,this paper proposes a multi-domain autonomous routing algorithm called LSTM+MADDPG.Introducing a Long Short-Term Memory(LSTM)layer in the actor and critic networks,more information about temporal continuity is added,further enhancing the adaptive ability changes in the dynamic network environment.The LSTM+MADDPG algorithm is compared with the latest reinforcement learning algorithm by conducting experiments on real network topology and traffic traces,and the experimental results show that LSTM+MADDPG improves the delay convergence speed by 14.6%and delays the start moment of packet loss by 18.2%compared with other algorithms.
文摘Since the D-band center theory was proposed,it has been widely used in the fields of surface chemistry by almost all researchers,due to its easy understanding,convenient operation and relative accuracy.However,with the continuous development of material systems and modification strategies,researchers have gradually found that D-band center theory is usually effective for large metal particle systems,but for small metal particle systems or semiconductors,such as single atom systems,the opposite conclusion to the D-band center theory is often obtained.To solve the issue above,here we propose a bonding and anti-bonding orbitals stable electron intensity difference(BASED)theory for surface chemistry.The newly-proposed BASED theory can not only successfully explain the abnormal phenomena of D-band center theory,but also exhibits a higher accuracy for prediction of adsorption energy and bond length of intermediates on active sites.Importantly,a new phenomenon of the spin transition state in the adsorption process is observed based on the BASED theory,where the active center atom usually yields an unstable high spin transition state to enhance its adsorption capability in the adsorption process of intermediates when their distance is about 2.5Å.In short,the BASED theory can be considered as a general principle to understand catalytic mechanism of intermediates on surfaces.
文摘Objective:To evaluate the application value of a refined quality control management model for a sterilization supply center.Methods:A retrospective analysis was conducted on the work situation of the sterilization supply center from January 2021 to January 2023.The work situation before January 31,2022,was classified as the control group;a routine quality control management model was implemented,and the work situation after January 31,2022,was classified as the observation group.The quality of medical device management and department satisfaction between the two groups were compared.Results:The timely recovery and supply rate,classification and cleaning pass rate,disinfection pass rate,packaging pass rate,sterilization pass rate,and department satisfaction score in the observation group were all higher than those of the control group(P<0.05).Conclusion:Implementing a refined quality control management model in the sterilization supply center can improve the quality management level of medical devices and department satisfaction and is worthy of promotion.
基金the National Natural Science Foundationof China (Grant No. 12265022)the Natural ScienceFoundation of Inner Mongolia Autonomous Region, China(Grant No. 2021MS01012)the Inner Mongolia FundamentalResearch Funds for the Directly Affiliated Universities(Grant No. 2023RCTD014).
文摘Entanglement in macroscopic systems,as a fundamental quantum resource,has been utilized to propel the advancement of quantum technology and probe the boundary between the quantum and classical realms.This study focuses on a unique hybrid quantum system comprising of an ensemble of silicon vacancy(SiV)centers coupled to phononic waveguides in diamond via strain interactions.By employing two sets of time-dependent,non-overlapping driving fields,we investigate the generation process and dynamic properties of macroscopic quantum entanglement,providing fresh insights into the behavior of such hybrid quantum systems.Furthermore,it paves the way for new possibilities in utilizing quantum entanglement as an information carrier in quantum information processing and quantum communication.
基金The Deanship of Scientific Research at Hashemite University partially funds this workDeanship of Scientific Research at the Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FFR-2024-1580-08”.
文摘Cloud Datacenter Network(CDN)providers usually have the option to scale their network structures to allow for far more resource capacities,though such scaling options may come with exponential costs that contradict their utility objectives.Yet,besides the cost of the physical assets and network resources,such scaling may also imposemore loads on the electricity power grids to feed the added nodes with the required energy to run and cool,which comes with extra costs too.Thus,those CDNproviders who utilize their resources better can certainly afford their services at lower price-units when compared to others who simply choose the scaling solutions.Resource utilization is a quite challenging process;indeed,clients of CDNs usually tend to exaggerate their true resource requirements when they lease their resources.Service providers are committed to their clients with Service Level Agreements(SLAs).Therefore,any amendment to the resource allocations needs to be approved by the clients first.In this work,we propose deploying a Stackelberg leadership framework to formulate a negotiation game between the cloud service providers and their client tenants.Through this,the providers seek to retrieve those leased unused resources from their clients.Cooperation is not expected from the clients,and they may ask high price units to return their extra resources to the provider’s premises.Hence,to motivate cooperation in such a non-cooperative game,as an extension to theVickery auctions,we developed an incentive-compatible pricingmodel for the returned resources.Moreover,we also proposed building a behavior belief function that shapes the way of negotiation and compensation for each client.Compared to other benchmark models,the assessment results showthat our proposed models provide for timely negotiation schemes,allowing for better resource utilization rates,higher utilities,and grid-friend CDNs.