The difference analysis of physical-mechanical properties of muddy sediments is made in the central South Yellow Sea and the Zhe-Min(Zhejiang Province to Fujian Province of China) coastal area. The results show that...The difference analysis of physical-mechanical properties of muddy sediments is made in the central South Yellow Sea and the Zhe-Min(Zhejiang Province to Fujian Province of China) coastal area. The results show that sediments in the two regions are both dominated by mud. There are perfect negative power function correlations between the water content and the density, the compression coefficient and the compression modulus; a good positive power function correlation between the liquid limit and the plastic limit, a perfect positive linear correlation between the water content and the void ratio, and a perfect polynomial function correlation between the miniature vane shear strength and the pocket penetration resistance. In general, compared with sediments in the Zhe-Min coastal area, sediments in the central South Yellow Sea possess high water content, high void ratio,low density, high plasticity, high compressibility, low shear strength. The causes of the differences between physical-mechanical properties of sediments are analyzed from the topographic features, material sources,hydrodynamic conditions, deposition rate, and material composition. Compared with the Zhe-Min coastal area,the central South Yellow Sea is far from the Mainland and low-lying; has poor hydrodynamic condition; the materials diffused to the area are less and dominated by fine clay, have the high content of smectite and organic matters. These factors lead to sediments of the central South Yellow Sea has the higher water content, the higher plasticity, the lower density, and the lower strength than sediments in the Zhe-Min coastal area.展开更多
With the method of trend analysis of sediment grain size, the sediment transport trend of the fine-grained sediments area in the central South Yellow Sea was studied. The results demonstrated that there is a sedimenta...With the method of trend analysis of sediment grain size, the sediment transport trend of the fine-grained sediments area in the central South Yellow Sea was studied. The results demonstrated that there is a sedimentation center around the point of 123.4° E, 35.1°N, and the sediments outside the center are transported to it. The patterns of sediment transportation and deposition in the Yellow Sea should be controlled by cyclonic circulation (including the Yellow Sea Cold Water Mass) and cold water gyre. The study also showed that the method of trend analysis of sediment grain size has prospective utilization in the fine-grained sediment deposited area on large-scale continental shelf.展开更多
We use the particle size of sediments in core YS01A to study the sedimentary environment of the mud deposit in the central South Yellow Sea of China during late Marine Isotope Stages 3 (MIS3; 40.5 kyr-31.3 kyr). In ...We use the particle size of sediments in core YS01A to study the sedimentary environment of the mud deposit in the central South Yellow Sea of China during late Marine Isotope Stages 3 (MIS3; 40.5 kyr-31.3 kyr). In addition, the East Asian Monsoon and its relationship with the North Atlantic Ocean climate change are discussed based on the sensitive grain-size calculation and the spectrum analysis. The results show that during late MIS3, the muddy area in the central South Yellow Sea experienced the evolution of coastal facies, shallow marine facies, coastal facies, and continental facies, with weak hydrodynamic conditions. Compared with other climate indicators, we found that there were many century to millennium-scale climate signals documented in the muddy area sediments in the central South Yellow Sea. According to our particle size results, three strong winter monsoon events occurred at 37.6kyr, 35.6kyr and 32.2kyr. The East Asian Winter Monsoon records in core YS01A are consistent with the Greenland ice core and the Hulu cave stalagmite 8180. The millennial and centennial scale cycles, which are 55 yr, 72 yr, 115 yr, 262 yr respectively, correspond to solar activity cycles, while the 1049 yr and 2941 yr cycles correspond to the Dansgaard-Oeschger cycles. These cycles indicate that the paleoclimate evolution of the area was controlled by the solar activities, with the high-latitude driving thermohaline circulation as the main energy conveyor belt, followed by the sea-air-land amplification of the winter monsoon variation in the central Yellow Sea in the late MIS3.展开更多
Relatively short historical catch records show that anchovy populations have exhibited large variability over multi-decadal timescales.In order to understand the driving factors(anthropogenic and/or natural) of such v...Relatively short historical catch records show that anchovy populations have exhibited large variability over multi-decadal timescales.In order to understand the driving factors(anthropogenic and/or natural) of such variability,it is essential to develop long-term time series of the population prior to the occurrence of notable anthropogenic impact.Well-preserved fish scales in the sediments are regarded as useful indicators reflecting the fluctuations of fish populations over the last centuries.This study aims to validate the anchovy scale deposition rate as a proxy of local anchovy biomass in the Yellow Sea adjoining the western North Pacific.Our reconstructed results indicated that over the last 150 years,the population size of anchovy in the Yellow Sea has exhibited great fluctuations with periodicity of around 50 years,and the pattern of current recovery and collapse is similar to that of historical records.The pattern of large-scale population synchrony with remote ocean basins provides further evidence proving that fish population dynamics are strongly affected by global and basin-scale oceanic/climatic variability.展开更多
基金The NSFC-Shandong Joint Fund for Marine Science Research Centers under contract No.U150640007the Natural Science Foundation of Shandong Province of China under contract No.BS2015HZ009the National Natural Science Foundation of China under contract No.41506071
文摘The difference analysis of physical-mechanical properties of muddy sediments is made in the central South Yellow Sea and the Zhe-Min(Zhejiang Province to Fujian Province of China) coastal area. The results show that sediments in the two regions are both dominated by mud. There are perfect negative power function correlations between the water content and the density, the compression coefficient and the compression modulus; a good positive power function correlation between the liquid limit and the plastic limit, a perfect positive linear correlation between the water content and the void ratio, and a perfect polynomial function correlation between the miniature vane shear strength and the pocket penetration resistance. In general, compared with sediments in the Zhe-Min coastal area, sediments in the central South Yellow Sea possess high water content, high void ratio,low density, high plasticity, high compressibility, low shear strength. The causes of the differences between physical-mechanical properties of sediments are analyzed from the topographic features, material sources,hydrodynamic conditions, deposition rate, and material composition. Compared with the Zhe-Min coastal area,the central South Yellow Sea is far from the Mainland and low-lying; has poor hydrodynamic condition; the materials diffused to the area are less and dominated by fine clay, have the high content of smectite and organic matters. These factors lead to sediments of the central South Yellow Sea has the higher water content, the higher plasticity, the lower density, and the lower strength than sediments in the Zhe-Min coastal area.
基金This work was supported by the Project of "China-Korea Sediment Dynamics and Paleoenvironment" the Youth Scientific Foundation of State Oceanic Administration (Grant No. 97401).
文摘With the method of trend analysis of sediment grain size, the sediment transport trend of the fine-grained sediments area in the central South Yellow Sea was studied. The results demonstrated that there is a sedimentation center around the point of 123.4° E, 35.1°N, and the sediments outside the center are transported to it. The patterns of sediment transportation and deposition in the Yellow Sea should be controlled by cyclonic circulation (including the Yellow Sea Cold Water Mass) and cold water gyre. The study also showed that the method of trend analysis of sediment grain size has prospective utilization in the fine-grained sediment deposited area on large-scale continental shelf.
基金supported by the Project of China Geological Survey(Nos.GZH201100202,DD20160158)the Project of Taishan Scholars
文摘We use the particle size of sediments in core YS01A to study the sedimentary environment of the mud deposit in the central South Yellow Sea of China during late Marine Isotope Stages 3 (MIS3; 40.5 kyr-31.3 kyr). In addition, the East Asian Monsoon and its relationship with the North Atlantic Ocean climate change are discussed based on the sensitive grain-size calculation and the spectrum analysis. The results show that during late MIS3, the muddy area in the central South Yellow Sea experienced the evolution of coastal facies, shallow marine facies, coastal facies, and continental facies, with weak hydrodynamic conditions. Compared with other climate indicators, we found that there were many century to millennium-scale climate signals documented in the muddy area sediments in the central South Yellow Sea. According to our particle size results, three strong winter monsoon events occurred at 37.6kyr, 35.6kyr and 32.2kyr. The East Asian Winter Monsoon records in core YS01A are consistent with the Greenland ice core and the Hulu cave stalagmite 8180. The millennial and centennial scale cycles, which are 55 yr, 72 yr, 115 yr, 262 yr respectively, correspond to solar activity cycles, while the 1049 yr and 2941 yr cycles correspond to the Dansgaard-Oeschger cycles. These cycles indicate that the paleoclimate evolution of the area was controlled by the solar activities, with the high-latitude driving thermohaline circulation as the main energy conveyor belt, followed by the sea-air-land amplification of the winter monsoon variation in the central Yellow Sea in the late MIS3.
基金supported by the National Basic Research Program (973 Program 2010CB428902)the National Natural Science Foundation of China (40876088)
文摘Relatively short historical catch records show that anchovy populations have exhibited large variability over multi-decadal timescales.In order to understand the driving factors(anthropogenic and/or natural) of such variability,it is essential to develop long-term time series of the population prior to the occurrence of notable anthropogenic impact.Well-preserved fish scales in the sediments are regarded as useful indicators reflecting the fluctuations of fish populations over the last centuries.This study aims to validate the anchovy scale deposition rate as a proxy of local anchovy biomass in the Yellow Sea adjoining the western North Pacific.Our reconstructed results indicated that over the last 150 years,the population size of anchovy in the Yellow Sea has exhibited great fluctuations with periodicity of around 50 years,and the pattern of current recovery and collapse is similar to that of historical records.The pattern of large-scale population synchrony with remote ocean basins provides further evidence proving that fish population dynamics are strongly affected by global and basin-scale oceanic/climatic variability.