Based on the organic geochemical data and the molecular and stable carbon isotopic compositions of natural gas of the Lower Permian Fengcheng Formation in the western Central Depression of Junggar Basin,combined with ...Based on the organic geochemical data and the molecular and stable carbon isotopic compositions of natural gas of the Lower Permian Fengcheng Formation in the western Central Depression of Junggar Basin,combined with sedimentary environment analysis and hydrocarbon-generating simulation,the gas-generating potential of the Fengcheng source rock is evaluated,the distribution of large-scale effective source kitchen is described,the genetic types of natural gas are clarified,and four types of favorable exploration targets are selected.The results show that:(1)The Fengcheng Formation is a set of oil-prone source rocks,and the retained liquid hydrocarbon is conducive to late cracking into gas,with characteristics of high gas-generating potential and late accumulation;(2)The maximum thickness of Fengcheng source rock reaches 900 m.The source rock has entered the main gas-generating stage in Penyijingxi and Shawan sags,and the area with gas-generating intensity greater than 20×10^(8) m^(3)/km^(2) is approximately 6500 km^(2).(3)Around the western Central Depression,highly mature oil-type gas with light carbon isotope composition was identified to be derived from the Fengcheng source rocks mainly,while the rest was coal-derived gas from the Carboniferous source rock;(4)Four types of favorable exploration targets with exploration potential were developed in the western Central Depression which are structural traps neighboring to the source,stratigraphic traps neighboring to the source,shale-gas type within the source,and structural traps within the source.Great attention should be paid to these targets.展开更多
The Xihu Depression is the largest hydrocarbon-bearing depression of the East China Sea Shelf Basin(also referred to as the ECSSB).However,the depositional systems and reservoir distribution of the Oligocene Huagang F...The Xihu Depression is the largest hydrocarbon-bearing depression of the East China Sea Shelf Basin(also referred to as the ECSSB).However,the depositional systems and reservoir distribution of the Oligocene Huagang Formation in the Xihu Depression are still controversial.Under the guidance of sedimentology and stratigraphy,this study documented a marine-terrestrial transitional environment in the restricted bay setting of the Oligocene Huagang Formation through core description,well logging,and seismic data analysis.This study also revealed that the Oligocene Huagang Formation is dominated by tidal delta,estuary,and gravity flow deposits in the central anticline zone of the Xihu Depression.The new understanding of the sedimentary systems and the discovery of the transgressive gap in the eastern Diaoyu Islands uplift explain the origin of fine-grained sediments and the EW-trending sand bodies in the central depression and the sand bodies parallel to shoreline in the west slope belt,which cannot be explained by previous study results,such as southern transgression or fluvial deltas and even lacustrine deposition.Moreover,the tidal channels,tidal sand flats,and gravity flow sand bodies formed by the transgressive tides are high-quality reservoirs.The study will provide a basis for well placement and serve as guidance for the selection of favorable hydrocarbon exploration areas in the Xihu Depression.展开更多
Using regional geological, newly acquired 2D and 3D seismic, drilling and well log data, especially 2D long cable seismic profiles, the structure and stratigraphy in the deep-water area of Qiongdongnan Basin are inter...Using regional geological, newly acquired 2D and 3D seismic, drilling and well log data, especially 2D long cable seismic profiles, the structure and stratigraphy in the deep-water area of Qiongdongnan Basin are interpreted. The geometry of No.2 fault system is also re-defined, which is an important fault in the central depression belt of the deep-water area in the Qiongdongnan Basin by employing the quantitative analysis techniques of fault activity and backstripping. Furthermore, the dynamical evolution of the No.2 fault sys-tem and its controls on the central depression belt are analyzed. This study indicates that the Qiongdongnan Basin was strongly influenced by the NW-trending tensile stress field during the Late Eocene. At this time, No.2 fault system initiated and was characterized by several discontinuous fault segments, which controlled a series small NE-trending fault basins. During the Oligocene, the regional extensional stress field changed from NW-SE to SN with the oceanic spreading of South China Sea, the early small faults started to grow along their strikes, eventually connected and merged as the listric shape of the No.2 fault system as ob-served today. No.2 fault detaches along the crustal Moho surface in the deep domain of the seismic profiles as a large-scale detachment fault. A large-scale rollover anticline formed in hanging wall of the detachment fault. There are a series of small fault basins in both limbs of the rollover anticline, showing that the early small basins were involved into fold deformation of the rollover anticline. Structurally, from west to east, the central depression belt is characterized by alternatively arranged graben and half-graben. The central depression belt of the Qiongdongnan Basin lies at the extension zone of the tip of the V-shaped northwest-ern ocean sub-basin of the South China Sea, its activity period is the same as the development period of the northwestern ocean sub-basin, furthermore the emplacement and eruption of magma that originated from the mantle below the Moho surface occurred at the region between Songnan-Baodao and Changchang sags, from east to west with the early-stage spreading of the South China Sea. Therefore, this study not only helps in depicting the structural features and evolution of the deep-water basin in the Qiongdongnan Basin, but also provides the geological and structural evidence for establishing a unified model of continental margin extension and oceanic spreading.展开更多
The Junggar Basin is rich in oil but lacks natural gas, which is inconsistent with its geological background of natural gas. Based on the analysis of main source kitchens, and the evaluation of geological setting and ...The Junggar Basin is rich in oil but lacks natural gas, which is inconsistent with its geological background of natural gas. Based on the analysis of main source kitchens, and the evaluation of geological setting and controlling factors of gas accumulation, it is proposed that three significant fields for gas exploration should be emphasized. The first field is the Carboniferous volcanic rocks. The Carboniferous residual sags and large-scale reservoirs were developed in three active continental margins, i.e., the southeastern, northeastern and northwestern active continental margins. Gas accumulation is controlled by the favorable reservoir-caprock combinations composed of volcanic rocks and their superimposed lacustrine mudstones in the Upper Wuerhe Formation. Dinan, Eastern and Zhongguai uplifts are three favorable directions for natural gas exploration. The second field is the Lower combinations in the southern margin of Junggar Basin. Rows of structural traps were developed in this area with ideal preservation conditions and space-time configuration for trap-source combinations. Sets of clastic reservoirs and overpressured mudstones formed perfect reservoir-caprock combinations which are the main exploration direction for Jurassic coal-type gas reservoirs in this area. The seven large structural traps in the middle-east section are recently the most significant targets. The last field is the Central Depression. Large hydrocarbon generating centers, i.e., Mahu, Fukang and Shawan sags, were developed in this area, their source rocks were deeply buried and at highly-mature stage. Thus the Central Depression is a favorable exploration direction for Permian high-over mature gas fields(reservoirs). Great attentions should be paid to two types of targets, the deeply–buried structures and structural-lithologic traps. Based on three main gas systems, gas exploration is suggested be strengthened within three fields and on three levels.展开更多
The Huimin(惠民) depression is a third-level tectonic element of the Bohai(渤海) Bay basin in eastern China.The central uplift belt is the most important oil and gas accumulation zone in the depression,but the lac...The Huimin(惠民) depression is a third-level tectonic element of the Bohai(渤海) Bay basin in eastern China.The central uplift belt is the most important oil and gas accumulation zone in the depression,but the lack of adequate geological studies in the area has greatly hindered exploration and development.In this article,using seismic data,fracture mechanics,and a combination of data on fault growth indices and fault throws,we present an analysis of tectonic activity in the central uplift belt and adjacent regions.The amount of extension is calculated along balanced N-S cross-sections,along with the thickness of strata eroded from the fourth,third,and second members of the Shahejie(沙河街) Formation(Es4-Es2) in the uplift belt,by analyzing porosity and stratigraphic correlations.In addition,uplift features are described,and their timing and processes of formation are analyzed and dis-cussed.The results indicate that strike-slip and extensional tectonic movements coexisted,with the effects of the latter most obvious.The spatial and temporal nature of the extensional move-ments is varied:fault activity during the period Ek-Es4 was the strongest on the northern Ningnan(宁南) fault,and activity in the western part of the area was stronger than that in the east,which in turn was stronger than that in the central region;during Es3-Es2,the strongest fault movements were along the eastern part of the middle Linyi(临邑) fault,and activity in the western part of the area was rela-tively weak,whereas in the mid-west it was the strongest.The extensional movements were a response to the activity of the faults.The sediments in the lower part of the fourth member of the Shahejie For-mation(Es4x) show that Es4 was the time when the central belt first began to be uplifted strongly.Uplift was uneven during the Paleogene:the western part of the area was uplifted continuously,while the mid-eastern area underwent alternating periods of uplift and subsidence.During the Paleogene,a number of different tectonic features developed in the central uplift belt at different times and are manifested as follows:during the period Ek-Es4,a gentle slope was formed as part of the Zizhen(滋镇) sag;during Es3-Es2,the northern part of the central uplift belt continued to display a gentle slope as part of the Zizhen sag,but the southern region developed an steep slope as part of the Linnan(临南) sag.There are close interrelationships between uplift,strike-slip,and extension within the central uplift belt of the Huimin depression,as is manifest by the areas of strongest extension being uplifted most rapidly,and also eroded the most.展开更多
Yinggehai(莺歌海) basin and Jiyang(济阳) depression experienced similar tectonic evo-lution,which is mainly controlled by the strike-slip faults.The strike pull-apart basins are characteris-tic by multiple deposit...Yinggehai(莺歌海) basin and Jiyang(济阳) depression experienced similar tectonic evo-lution,which is mainly controlled by the strike-slip faults.The strike pull-apart basins are characteris-tic by multiple deposition cycles,migration of deposition and subsidence center,and diversity deposi-tional systems.Furthermore,both basins show abnormal formation pressure.Compared with the oil and gas-rich Jiyang depression,Yinggehai basin developed the similar geological background that is favorable to the formation of funnel-shaped meshwork-carpet subtle reservoirs.Overpressure diapir body is the core of hydrocarbon accumulation in central diaper zone of Yinggehai basin.Driven by high pressure,oil and gas migrate along the funnel-shaped passage system into the overlying low-potential zone formed.The overlying sand bodies of overpressure diapirs are the favorable gas exploration zone.展开更多
基金Supported by the National Natural Science Foundation of China(41802177,42272188)PetroChina Basic Technology Research and Development Project(2021DJ0206,2022DJ0507)Research Fund of PetroChina Basic Scientific Research and Strategic Reserve Technology(2020D-5008-04).
文摘Based on the organic geochemical data and the molecular and stable carbon isotopic compositions of natural gas of the Lower Permian Fengcheng Formation in the western Central Depression of Junggar Basin,combined with sedimentary environment analysis and hydrocarbon-generating simulation,the gas-generating potential of the Fengcheng source rock is evaluated,the distribution of large-scale effective source kitchen is described,the genetic types of natural gas are clarified,and four types of favorable exploration targets are selected.The results show that:(1)The Fengcheng Formation is a set of oil-prone source rocks,and the retained liquid hydrocarbon is conducive to late cracking into gas,with characteristics of high gas-generating potential and late accumulation;(2)The maximum thickness of Fengcheng source rock reaches 900 m.The source rock has entered the main gas-generating stage in Penyijingxi and Shawan sags,and the area with gas-generating intensity greater than 20×10^(8) m^(3)/km^(2) is approximately 6500 km^(2).(3)Around the western Central Depression,highly mature oil-type gas with light carbon isotope composition was identified to be derived from the Fengcheng source rocks mainly,while the rest was coal-derived gas from the Carboniferous source rock;(4)Four types of favorable exploration targets with exploration potential were developed in the western Central Depression which are structural traps neighboring to the source,stratigraphic traps neighboring to the source,shale-gas type within the source,and structural traps within the source.Great attention should be paid to these targets.
文摘The Xihu Depression is the largest hydrocarbon-bearing depression of the East China Sea Shelf Basin(also referred to as the ECSSB).However,the depositional systems and reservoir distribution of the Oligocene Huagang Formation in the Xihu Depression are still controversial.Under the guidance of sedimentology and stratigraphy,this study documented a marine-terrestrial transitional environment in the restricted bay setting of the Oligocene Huagang Formation through core description,well logging,and seismic data analysis.This study also revealed that the Oligocene Huagang Formation is dominated by tidal delta,estuary,and gravity flow deposits in the central anticline zone of the Xihu Depression.The new understanding of the sedimentary systems and the discovery of the transgressive gap in the eastern Diaoyu Islands uplift explain the origin of fine-grained sediments and the EW-trending sand bodies in the central depression and the sand bodies parallel to shoreline in the west slope belt,which cannot be explained by previous study results,such as southern transgression or fluvial deltas and even lacustrine deposition.Moreover,the tidal channels,tidal sand flats,and gravity flow sand bodies formed by the transgressive tides are high-quality reservoirs.The study will provide a basis for well placement and serve as guidance for the selection of favorable hydrocarbon exploration areas in the Xihu Depression.
基金The National Science and Technology Major Project of China under contract No.2011ZX05025-002-02the National Natural Sci-ence Foundation of China under contract Nos 41272121,91028009 and 41102071
文摘Using regional geological, newly acquired 2D and 3D seismic, drilling and well log data, especially 2D long cable seismic profiles, the structure and stratigraphy in the deep-water area of Qiongdongnan Basin are interpreted. The geometry of No.2 fault system is also re-defined, which is an important fault in the central depression belt of the deep-water area in the Qiongdongnan Basin by employing the quantitative analysis techniques of fault activity and backstripping. Furthermore, the dynamical evolution of the No.2 fault sys-tem and its controls on the central depression belt are analyzed. This study indicates that the Qiongdongnan Basin was strongly influenced by the NW-trending tensile stress field during the Late Eocene. At this time, No.2 fault system initiated and was characterized by several discontinuous fault segments, which controlled a series small NE-trending fault basins. During the Oligocene, the regional extensional stress field changed from NW-SE to SN with the oceanic spreading of South China Sea, the early small faults started to grow along their strikes, eventually connected and merged as the listric shape of the No.2 fault system as ob-served today. No.2 fault detaches along the crustal Moho surface in the deep domain of the seismic profiles as a large-scale detachment fault. A large-scale rollover anticline formed in hanging wall of the detachment fault. There are a series of small fault basins in both limbs of the rollover anticline, showing that the early small basins were involved into fold deformation of the rollover anticline. Structurally, from west to east, the central depression belt is characterized by alternatively arranged graben and half-graben. The central depression belt of the Qiongdongnan Basin lies at the extension zone of the tip of the V-shaped northwest-ern ocean sub-basin of the South China Sea, its activity period is the same as the development period of the northwestern ocean sub-basin, furthermore the emplacement and eruption of magma that originated from the mantle below the Moho surface occurred at the region between Songnan-Baodao and Changchang sags, from east to west with the early-stage spreading of the South China Sea. Therefore, this study not only helps in depicting the structural features and evolution of the deep-water basin in the Qiongdongnan Basin, but also provides the geological and structural evidence for establishing a unified model of continental margin extension and oceanic spreading.
基金Supported by the National Science and Technology Major Project(2017ZX5001)
文摘The Junggar Basin is rich in oil but lacks natural gas, which is inconsistent with its geological background of natural gas. Based on the analysis of main source kitchens, and the evaluation of geological setting and controlling factors of gas accumulation, it is proposed that three significant fields for gas exploration should be emphasized. The first field is the Carboniferous volcanic rocks. The Carboniferous residual sags and large-scale reservoirs were developed in three active continental margins, i.e., the southeastern, northeastern and northwestern active continental margins. Gas accumulation is controlled by the favorable reservoir-caprock combinations composed of volcanic rocks and their superimposed lacustrine mudstones in the Upper Wuerhe Formation. Dinan, Eastern and Zhongguai uplifts are three favorable directions for natural gas exploration. The second field is the Lower combinations in the southern margin of Junggar Basin. Rows of structural traps were developed in this area with ideal preservation conditions and space-time configuration for trap-source combinations. Sets of clastic reservoirs and overpressured mudstones formed perfect reservoir-caprock combinations which are the main exploration direction for Jurassic coal-type gas reservoirs in this area. The seven large structural traps in the middle-east section are recently the most significant targets. The last field is the Central Depression. Large hydrocarbon generating centers, i.e., Mahu, Fukang and Shawan sags, were developed in this area, their source rocks were deeply buried and at highly-mature stage. Thus the Central Depression is a favorable exploration direction for Permian high-over mature gas fields(reservoirs). Great attentions should be paid to two types of targets, the deeply–buried structures and structural-lithologic traps. Based on three main gas systems, gas exploration is suggested be strengthened within three fields and on three levels.
基金supported by the Natural Science Foundation of Shandong Province (No. ZR2009EQ002)the Foundation of the Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals (No. DMSM201005)+1 种基金the National Natural Science Foundation of China (No. 90814006)the Project of Excellent Young College Teachers Home Visiting Scholar during 2009 in Shandong Province, and the Postgraduate Innovation Foundation of Shandong University of Science and Technology (No. YCB100112)
文摘The Huimin(惠民) depression is a third-level tectonic element of the Bohai(渤海) Bay basin in eastern China.The central uplift belt is the most important oil and gas accumulation zone in the depression,but the lack of adequate geological studies in the area has greatly hindered exploration and development.In this article,using seismic data,fracture mechanics,and a combination of data on fault growth indices and fault throws,we present an analysis of tectonic activity in the central uplift belt and adjacent regions.The amount of extension is calculated along balanced N-S cross-sections,along with the thickness of strata eroded from the fourth,third,and second members of the Shahejie(沙河街) Formation(Es4-Es2) in the uplift belt,by analyzing porosity and stratigraphic correlations.In addition,uplift features are described,and their timing and processes of formation are analyzed and dis-cussed.The results indicate that strike-slip and extensional tectonic movements coexisted,with the effects of the latter most obvious.The spatial and temporal nature of the extensional move-ments is varied:fault activity during the period Ek-Es4 was the strongest on the northern Ningnan(宁南) fault,and activity in the western part of the area was stronger than that in the east,which in turn was stronger than that in the central region;during Es3-Es2,the strongest fault movements were along the eastern part of the middle Linyi(临邑) fault,and activity in the western part of the area was rela-tively weak,whereas in the mid-west it was the strongest.The extensional movements were a response to the activity of the faults.The sediments in the lower part of the fourth member of the Shahejie For-mation(Es4x) show that Es4 was the time when the central belt first began to be uplifted strongly.Uplift was uneven during the Paleogene:the western part of the area was uplifted continuously,while the mid-eastern area underwent alternating periods of uplift and subsidence.During the Paleogene,a number of different tectonic features developed in the central uplift belt at different times and are manifested as follows:during the period Ek-Es4,a gentle slope was formed as part of the Zizhen(滋镇) sag;during Es3-Es2,the northern part of the central uplift belt continued to display a gentle slope as part of the Zizhen sag,but the southern region developed an steep slope as part of the Linnan(临南) sag.There are close interrelationships between uplift,strike-slip,and extension within the central uplift belt of the Huimin depression,as is manifest by the areas of strongest extension being uplifted most rapidly,and also eroded the most.
基金supported by the National Basic Research Program of China(No.2009CB219401)the Guangzhou Center for Gas Hydrate Research,Chinese Academy of Sciences(No.CASHYD007s4)
文摘Yinggehai(莺歌海) basin and Jiyang(济阳) depression experienced similar tectonic evo-lution,which is mainly controlled by the strike-slip faults.The strike pull-apart basins are characteris-tic by multiple deposition cycles,migration of deposition and subsidence center,and diversity deposi-tional systems.Furthermore,both basins show abnormal formation pressure.Compared with the oil and gas-rich Jiyang depression,Yinggehai basin developed the similar geological background that is favorable to the formation of funnel-shaped meshwork-carpet subtle reservoirs.Overpressure diapir body is the core of hydrocarbon accumulation in central diaper zone of Yinggehai basin.Driven by high pressure,oil and gas migrate along the funnel-shaped passage system into the overlying low-potential zone formed.The overlying sand bodies of overpressure diapirs are the favorable gas exploration zone.