A tiny fraction of influential individuals play a critical role in the dynamics on complex systems. Identifying the influential nodes in complex networks has theoretical and practical significance. Considering the unc...A tiny fraction of influential individuals play a critical role in the dynamics on complex systems. Identifying the influential nodes in complex networks has theoretical and practical significance. Considering the uncertainties of network scale and topology, and the timeliness of dynamic behaviors in real networks, we propose a rapid identifying method(RIM)to find the fraction of high-influential nodes. Instead of ranking all nodes, our method only aims at ranking a small number of nodes in network. We set the high-influential nodes as initial spreaders, and evaluate the performance of RIM by the susceptible-infected-recovered(SIR) model. The simulations show that in different networks, RIM performs well on rapid identifying high-influential nodes, which is verified by typical ranking methods, such as degree, closeness, betweenness,and eigenvector centrality methods.展开更多
Identifying influential nodes in complex networks is still an open issue. In this paper, a new comprehensive centrality mea- sure is proposed based on the Dempster-Shafer evidence theory. The existing measures of degr...Identifying influential nodes in complex networks is still an open issue. In this paper, a new comprehensive centrality mea- sure is proposed based on the Dempster-Shafer evidence theory. The existing measures of degree centrality, betweenness centra- lity and closeness centrality are taken into consideration in the proposed method. Numerical examples are used to illustrate the effectiveness of the proposed method.展开更多
The objective of the recently proposed fuzzy based hierarchical routing protocol F-SCH is to improve the lifetime of a Wireless Sensor Network. Though the performance of F-SCH is better than LEACH, the randomness in C...The objective of the recently proposed fuzzy based hierarchical routing protocol F-SCH is to improve the lifetime of a Wireless Sensor Network. Though the performance of F-SCH is better than LEACH, the randomness in CH selection inhibits it from attaining enhanced lifetime. CBCH ensures maximum network lifetime when CH is close to the centroid of the cluster. However, for a widely distributed network, CBCH results in small sized clusters increasing the inter cluster communication cost. Hence, with an objective to enhance the network lifetime, a fuzzy based two-level hierarchical routing protocol is proposed. The novelty of the proposal lies in identification of appropriate parameters used in Cluster Head and Super Cluster Head selection. Experiments for different network scenarios are performed through both simulation and hardware to validate the proposal. The performance of the network is evaluated in terms of Node Death. The proposal is compared with F-SCH and the results reveal the efficacy of the proposal in enhancing the lifetime of network.展开更多
Recently, the exponential rise in communication system demands has motivated global academia-industry to develop efficient communication technologies to fulfill energy efficiency and Quality of Service (QoS) demands. ...Recently, the exponential rise in communication system demands has motivated global academia-industry to develop efficient communication technologies to fulfill energy efficiency and Quality of Service (QoS) demands. Wireless Sensor Network (WSN) being one of the most efficient technologies possesses immense potential to serve major communication purposes including civil, defense and industrial purposes etc. The inclusion of sensor-mobility with WSN has broadened application horizon. The effectiveness of WSNs can be characterized by its ability to perform efficient data gathering and transmission to the base station for decision process. Clustering based routing scheme has been one of the dominating techniques for WSN systems;however key issues like, cluster formation, selection of the number of clusters and cluster heads, and data transmission decision from sensors to the mobile sink have always been an open research area. In this paper, a robust and energy efficient single mobile sink based WSN data gathering protocol is proposed. Unlike existing approaches, an enhanced centralized clustering model is developed on the basis of expectation-maximization (EEM) concept. Further, it is strengthened by using an optimal cluster count estimation technique that ensures that the number of clusters in the network region doesn’t introduce unwanted energy exhaustion. Meanwhile, the relative distance between sensor node and cluster head as well as mobile sink is used to make transmission (path) decision. Results exhibit that the proposed EEM based clustering with optimal cluster selection and optimal dynamic transmission decision enables higher throughput, fast data gathering, minima delay and energy consumption, and higher展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61374180 and 61373136)the Ministry of Education Research in the Humanities and Social Sciences Planning Fund Project,China(Grant No.12YJAZH120)the Six Projects Sponsoring Talent Summits of Jiangsu Province,China(Grant No.RLD201212)
文摘A tiny fraction of influential individuals play a critical role in the dynamics on complex systems. Identifying the influential nodes in complex networks has theoretical and practical significance. Considering the uncertainties of network scale and topology, and the timeliness of dynamic behaviors in real networks, we propose a rapid identifying method(RIM)to find the fraction of high-influential nodes. Instead of ranking all nodes, our method only aims at ranking a small number of nodes in network. We set the high-influential nodes as initial spreaders, and evaluate the performance of RIM by the susceptible-infected-recovered(SIR) model. The simulations show that in different networks, RIM performs well on rapid identifying high-influential nodes, which is verified by typical ranking methods, such as degree, closeness, betweenness,and eigenvector centrality methods.
基金supported by the National Natural Science Foundation of China(61174022)the National High Technology Research and Development Program of China(863 Program)(2013AA013801)+2 种基金the Open Funding Project of State Key Laboratory of Virtual Reality Technology and Systems,Beihang University(BUAA-VR-14KF-02)the General Research Program of the Science Supported by Sichuan Provincial Department of Education(14ZB0322)the Fundamental Research Funds for the Central Universities(XDJK2014D008)
文摘Identifying influential nodes in complex networks is still an open issue. In this paper, a new comprehensive centrality mea- sure is proposed based on the Dempster-Shafer evidence theory. The existing measures of degree centrality, betweenness centra- lity and closeness centrality are taken into consideration in the proposed method. Numerical examples are used to illustrate the effectiveness of the proposed method.
文摘The objective of the recently proposed fuzzy based hierarchical routing protocol F-SCH is to improve the lifetime of a Wireless Sensor Network. Though the performance of F-SCH is better than LEACH, the randomness in CH selection inhibits it from attaining enhanced lifetime. CBCH ensures maximum network lifetime when CH is close to the centroid of the cluster. However, for a widely distributed network, CBCH results in small sized clusters increasing the inter cluster communication cost. Hence, with an objective to enhance the network lifetime, a fuzzy based two-level hierarchical routing protocol is proposed. The novelty of the proposal lies in identification of appropriate parameters used in Cluster Head and Super Cluster Head selection. Experiments for different network scenarios are performed through both simulation and hardware to validate the proposal. The performance of the network is evaluated in terms of Node Death. The proposal is compared with F-SCH and the results reveal the efficacy of the proposal in enhancing the lifetime of network.
文摘Recently, the exponential rise in communication system demands has motivated global academia-industry to develop efficient communication technologies to fulfill energy efficiency and Quality of Service (QoS) demands. Wireless Sensor Network (WSN) being one of the most efficient technologies possesses immense potential to serve major communication purposes including civil, defense and industrial purposes etc. The inclusion of sensor-mobility with WSN has broadened application horizon. The effectiveness of WSNs can be characterized by its ability to perform efficient data gathering and transmission to the base station for decision process. Clustering based routing scheme has been one of the dominating techniques for WSN systems;however key issues like, cluster formation, selection of the number of clusters and cluster heads, and data transmission decision from sensors to the mobile sink have always been an open research area. In this paper, a robust and energy efficient single mobile sink based WSN data gathering protocol is proposed. Unlike existing approaches, an enhanced centralized clustering model is developed on the basis of expectation-maximization (EEM) concept. Further, it is strengthened by using an optimal cluster count estimation technique that ensures that the number of clusters in the network region doesn’t introduce unwanted energy exhaustion. Meanwhile, the relative distance between sensor node and cluster head as well as mobile sink is used to make transmission (path) decision. Results exhibit that the proposed EEM based clustering with optimal cluster selection and optimal dynamic transmission decision enables higher throughput, fast data gathering, minima delay and energy consumption, and higher