As a typical rhythmic movement, human being's rhythmic gait movement can be generated by a central pattern generator (CPG) located in a spinal cord by self- oscillation. Some kinds of gait movements are caused by g...As a typical rhythmic movement, human being's rhythmic gait movement can be generated by a central pattern generator (CPG) located in a spinal cord by self- oscillation. Some kinds of gait movements are caused by gait frequency and amplitude variances. As an important property of human being's motion vision, the attention selection mechanism plays a vital part in the regulation of gait movement. In this paper, the CPG model is amended under the condition of attention selection on the theoretical basis of Matsuoka neural oscillators. Regulation of attention selection signal for the CPG model parameters and structure is studied, which consequentially causes the frequency and amplitude changes of gait movement output. Further, the control strategy of the CPG model gait movement under the condition of attention selection is discussed, showing that the attention selection model can regulate the output model of CPG gait movement in three different ways. The realization of regulation on the gait movement frequency and amplitude shows a variety of regulation on the CPG gait movement made by attention selection and enriches the controllability of CPG gait movement, which demonstrates potential influence in engineering applications.展开更多
According to the theory of Matsuoka neural oscillators and with the con- sideration of the fact that the human upper arm mainly consists of six muscles, a new kind of central pattern generator (CPG) neural network c...According to the theory of Matsuoka neural oscillators and with the con- sideration of the fact that the human upper arm mainly consists of six muscles, a new kind of central pattern generator (CPG) neural network consisting of six neurons is pro- posed to regulate the contraction of the upper arm muscles. To verify effectiveness of the proposed CPG network, an arm motion control model based on the CPG is established. By adjusting the CPG parameters, we obtain the neural responses of the network, the angles of joint and hand of the model with MATLAB. The simulation results agree with the results of crank rotation experiments designed by Ohta et al., showing that the arm motion control model based on a CPG network is reasonable and effective.展开更多
Based on Matsuoka's central pattern generator (CPG) model and taking quadruped as an example, the dynamics of CPG model was investigated through the single-parameter-analysis method and the numerical simulation tec...Based on Matsuoka's central pattern generator (CPG) model and taking quadruped as an example, the dynamics of CPG model was investigated through the single-parameter-analysis method and the numerical simulation technique. Simulation results indicate that the CPG model exhibits complex dynamics, while each parameter has specifically definitive influence trends on the CPG output. These conclusions were applied to control a quadrupedal robot to walk in different gaits, clear obstacle, and walk up- and down-slope successfully.展开更多
The development of secondary health complications following spinal cord injury has been increasingly recognized by healthcare professionals as a major concern. These problems most specifically affect complete or near-...The development of secondary health complications following spinal cord injury has been increasingly recognized by healthcare professionals as a major concern. These problems most specifically affect complete or near-complete spinal cord injury patients (e.g., those with minimal mobility), who are not typically rehabilitated with treadmill training approaches, because motor control and leg movements are largely impaired. However, recent pharmaceutical advances in central pattern generator activation may provide new therapeutic hopes for these spinal cord injury patients. This article provides a comprehensive overview, for the non-specialist, of the most recent advances in this field.展开更多
Many behavioral activities of the horseshoe crab Limulus are rhythmic, and most of these are produced in large part by central pattern generators within the CNS. The chain of opisthosomal (‘abdominal') ganglia con...Many behavioral activities of the horseshoe crab Limulus are rhythmic, and most of these are produced in large part by central pattern generators within the CNS. The chain of opisthosomal (‘abdominal') ganglia controls gill movements of ventilation and gill cleaning, and the prosomal ring of fused ganglia (brain and segmental ‘thoracic' ganglia) controls generation of feeding and locomotor movements of the legs. Both the opisthosomal CNS and the prosomal CNS can generate behaviorally ap- propriate patterns of motor output in isolation, without movements or sensory input. Preparations of the isolated opisthosomal CNS generate rhythmic output patterns of motor activity characterized as fictive ventilatory and gill cleaning rhythms. Moreover, CNS preparations also express longer-term patterns, such as intermittent ventilation or sequential bouts of ventilation and gill cleaning. Such longer-term patterns are commonly observed in intact animals. The isolated prosomal CNS does not spontaneously generate the activity patterns characteristic of walking, swimming, and feeding. However, perfusion of octopamine in the isolated prosomal CNS activates central pattern generators underlying rhythmic chewing movements, and injection of octopamine into in- tact Limulus promotes the chewing pattern of feeding, whether or not food is presented. Our understanding of the ability of neu-romodulators such as octopamine to elicit or alter central motor programs may help to clarify the central neural circuits of pattern generation that oroduce and coordinate these rhythmic behaviors展开更多
This paper introduces the design and control of a biomimetic robot fish for multimodal swimming.The biomimetic design consists of three parts:the rigid head,the wire-driven body and the compliant tail.The control is a...This paper introduces the design and control of a biomimetic robot fish for multimodal swimming.The biomimetic design consists of three parts:the rigid head,the wire-driven body and the compliant tail.The control is an improved Central Pattern Generator(CPG)with the high-level control command:(M,co,B,R),where M is the amplitude,co is the angular velocity,B is the offtet and R is the time ratio between two phases forming one flapping cycle.This method differs from previous research in two aspects:(1)The CPG control is firstly implemented on the wire-driven robot fish.(2)The improved CPG model synthesizes symmetrical flapping in cruising and asymmetrical flapping in turning for the robot fish.The asymmetrical flapping refers to the asymmetry of the offset and the time ratio.This combination of the design and the control has several advantages over the existing multimodal swimming robot fishes.First,it uses just one driving motor for undulatory oscillation while the others need to use two or more motors.Second,with just one motor,the CPG control can be easily implemented.Third,the use of the time ratio,R,makes the robot fish turn more naturally and effectively.Experimental results show the robot fish achieved the maximum speed of 1.37 Body Length/Second(BL.s-1)and the largest turning rate of 4577s.Additionally,in many swimming conditions,its Strouhal Number falls in the range from 0.2 to 0.4,which implies the robot fish is efficient.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11232005 and11472104)the Doctoral Fund of Ministry of Education of China(No.20120074110020)
文摘As a typical rhythmic movement, human being's rhythmic gait movement can be generated by a central pattern generator (CPG) located in a spinal cord by self- oscillation. Some kinds of gait movements are caused by gait frequency and amplitude variances. As an important property of human being's motion vision, the attention selection mechanism plays a vital part in the regulation of gait movement. In this paper, the CPG model is amended under the condition of attention selection on the theoretical basis of Matsuoka neural oscillators. Regulation of attention selection signal for the CPG model parameters and structure is studied, which consequentially causes the frequency and amplitude changes of gait movement output. Further, the control strategy of the CPG model gait movement under the condition of attention selection is discussed, showing that the attention selection model can regulate the output model of CPG gait movement in three different ways. The realization of regulation on the gait movement frequency and amplitude shows a variety of regulation on the CPG gait movement made by attention selection and enriches the controllability of CPG gait movement, which demonstrates potential influence in engineering applications.
基金supported by the National Natural Science Foundation of China(Nos.11232005 and11472104)
文摘According to the theory of Matsuoka neural oscillators and with the con- sideration of the fact that the human upper arm mainly consists of six muscles, a new kind of central pattern generator (CPG) neural network consisting of six neurons is pro- posed to regulate the contraction of the upper arm muscles. To verify effectiveness of the proposed CPG network, an arm motion control model based on the CPG is established. By adjusting the CPG parameters, we obtain the neural responses of the network, the angles of joint and hand of the model with MATLAB. The simulation results agree with the results of crank rotation experiments designed by Ohta et al., showing that the arm motion control model based on a CPG network is reasonable and effective.
文摘Based on Matsuoka's central pattern generator (CPG) model and taking quadruped as an example, the dynamics of CPG model was investigated through the single-parameter-analysis method and the numerical simulation technique. Simulation results indicate that the CPG model exhibits complex dynamics, while each parameter has specifically definitive influence trends on the CPG output. These conclusions were applied to control a quadrupedal robot to walk in different gaits, clear obstacle, and walk up- and down-slope successfully.
文摘The development of secondary health complications following spinal cord injury has been increasingly recognized by healthcare professionals as a major concern. These problems most specifically affect complete or near-complete spinal cord injury patients (e.g., those with minimal mobility), who are not typically rehabilitated with treadmill training approaches, because motor control and leg movements are largely impaired. However, recent pharmaceutical advances in central pattern generator activation may provide new therapeutic hopes for these spinal cord injury patients. This article provides a comprehensive overview, for the non-specialist, of the most recent advances in this field.
基金the U.S. Public Health Service for research grant funding for much of the work in my laboratory
文摘Many behavioral activities of the horseshoe crab Limulus are rhythmic, and most of these are produced in large part by central pattern generators within the CNS. The chain of opisthosomal (‘abdominal') ganglia controls gill movements of ventilation and gill cleaning, and the prosomal ring of fused ganglia (brain and segmental ‘thoracic' ganglia) controls generation of feeding and locomotor movements of the legs. Both the opisthosomal CNS and the prosomal CNS can generate behaviorally ap- propriate patterns of motor output in isolation, without movements or sensory input. Preparations of the isolated opisthosomal CNS generate rhythmic output patterns of motor activity characterized as fictive ventilatory and gill cleaning rhythms. Moreover, CNS preparations also express longer-term patterns, such as intermittent ventilation or sequential bouts of ventilation and gill cleaning. Such longer-term patterns are commonly observed in intact animals. The isolated prosomal CNS does not spontaneously generate the activity patterns characteristic of walking, swimming, and feeding. However, perfusion of octopamine in the isolated prosomal CNS activates central pattern generators underlying rhythmic chewing movements, and injection of octopamine into in- tact Limulus promotes the chewing pattern of feeding, whether or not food is presented. Our understanding of the ability of neu-romodulators such as octopamine to elicit or alter central motor programs may help to clarify the central neural circuits of pattern generation that oroduce and coordinate these rhythmic behaviors
文摘This paper introduces the design and control of a biomimetic robot fish for multimodal swimming.The biomimetic design consists of three parts:the rigid head,the wire-driven body and the compliant tail.The control is an improved Central Pattern Generator(CPG)with the high-level control command:(M,co,B,R),where M is the amplitude,co is the angular velocity,B is the offtet and R is the time ratio between two phases forming one flapping cycle.This method differs from previous research in two aspects:(1)The CPG control is firstly implemented on the wire-driven robot fish.(2)The improved CPG model synthesizes symmetrical flapping in cruising and asymmetrical flapping in turning for the robot fish.The asymmetrical flapping refers to the asymmetry of the offset and the time ratio.This combination of the design and the control has several advantages over the existing multimodal swimming robot fishes.First,it uses just one driving motor for undulatory oscillation while the others need to use two or more motors.Second,with just one motor,the CPG control can be easily implemented.Third,the use of the time ratio,R,makes the robot fish turn more naturally and effectively.Experimental results show the robot fish achieved the maximum speed of 1.37 Body Length/Second(BL.s-1)and the largest turning rate of 4577s.Additionally,in many swimming conditions,its Strouhal Number falls in the range from 0.2 to 0.4,which implies the robot fish is efficient.