A high speed and small mass-flow-rate centrifugal compressor with original and modified volute tongue shape was simulated by 3D viscous Navier-Stokes equations.A sharp and a round tongue of volute were modeled to comp...A high speed and small mass-flow-rate centrifugal compressor with original and modified volute tongue shape was simulated by 3D viscous Navier-Stokes equations.A sharp and a round tongue of volute were modeled to compare their pressure ratios and efficiency characteristics.The flow fields around volute tongues were investigated;the velocity and pressure distributions of volute inlet were studied by unsteady simulation.Static pressure fluctuation near volute tongue was monitored and transformed into amplitude spectrum to identify blade passing frequency influence.The results show that the tongue simplification can cause certain difference on pressure ratio and efficiency.The pressure and velocity distribution of volute inlet indicate obvious circumferential distortion due to volute tongue especially at low mass flow rate.In addition,the static pressure pulsation of volute inlet and the noise level in diffuser and volute increase significantly under low mass flow operating condition.展开更多
Extensive numerical investigations of the performance and flow structure in an unshrouded tandem-bladed centrifugal compressor are presented in comparison to a conventional compressor.Stage characteristics are explore...Extensive numerical investigations of the performance and flow structure in an unshrouded tandem-bladed centrifugal compressor are presented in comparison to a conventional compressor.Stage characteristics are explored for various tip clearance levels,axial spacings and circumferential clockings.Conventional impeller was modified to tandem-bladed design with no modifications in backsweep angle,meridional gas passage and camber distributions in order to have a true comparison with conventional design.Performance degradation is observed for both the conventional and tandem designs with increase in tip clearance.Linear-equation models for correlating stage characteristics with tip clearance are proposed.Comparing two designs,it is clearly evident that the conventional design shows better performance at moderate flow rates.However;near choke flow,tandem design gives better results primarily because of the increase in throat area.Surge point flow rate also seems to drop for tandem compressor resulting in increased range of operation.展开更多
Three different inlet configurations,including a original straight pipe and two bend pipes with different axial length,for a high speed low mass flow centrifugal compressor were modeled with whole blade passages and s...Three different inlet configurations,including a original straight pipe and two bend pipes with different axial length,for a high speed low mass flow centrifugal compressor were modeled with whole blade passages and simulated unsteadily by 3D viscous Navier-Stokes equations.The performance disparities of compressor stage were tested and verified by experiments in which dynamic pressure data acquisition of internal flow field was performed.As the result shows,the choke point decreases to lower mass flow rate due to the distortion caused by bend-pipe inlet and is aggravated as the rotation speed increases.The distortion effect spreads circumferentially in impeller and makes the flow structure varied.The longer axial distance bent inlet leads to larger radial distortion and heavy blockage at mid-span under large mass flow mainly causes compressor choke margin nar-rowed.Bend pipe distortion brings an impact up to diffuser on unsteady pressure pulsation caused by blades sweep and the impact appears more powerful when it is closer to volute tongue.展开更多
Centrifugal compressors for the fuel cell vehicles often operate near the surge line compared with the turbocharger compressors.Low solidity and half vaned diffusers are recognized as good ways to improve the stabilit...Centrifugal compressors for the fuel cell vehicles often operate near the surge line compared with the turbocharger compressors.Low solidity and half vaned diffusers are recognized as good ways to improve the stability of the centrifugal compressor.The presented work investigated four diffuser configurations (i.e.,the vaneless diffuser (VLD),full-height low solidity vaned diffuser (LSVD),hub-side half vaned diffuser (HVD) and shroud-side half vaned diffuser (SVD)) through steady-state and unsteady numerical simulations.The results show that the best performance is achieved by the LSVD,HVD and SVD at the design,surge and choke conditions.The flow rate at the surge operating point of the HVD has decreased by 15.53% compared with the LSVD,and 9.21% compared with the VLD.At near surge operating point,a longitudinal suction side passage vortex is formed on the hub of the LSVD and rotates as circumferential stall cells.A hairpin vortex is formed along the leading edge and is dragged by the main flow along the suction side as a local vortex shedding.The mechanism of the stability improvement by half vaned diffusers is that the tip leakage vortex migrates from the clearance side to the vane mounting side and replenishes the low-momentum zone on the mounting side.The best position where the half vaned diffuser should be mounted is based on the impeller outlet flow conditions,namely,the location of the wake region,where the meridional velocity and relative stagnation pressure is low.展开更多
A single stage ultra micro centrifugal compressor constituting ultra micro gas turbine is required to operate at high rotational speed in order to achieve the pressure ratio which establishes the gas turbine cycle. As...A single stage ultra micro centrifugal compressor constituting ultra micro gas turbine is required to operate at high rotational speed in order to achieve the pressure ratio which establishes the gas turbine cycle. As a conse- quence, the aerodynamic losses can be increased by the interaction of a shock wave with the boundary layer on the blade surface. Moreover, the centrifugal force which exceeds the allowable s^ress of the impeller material can act on the root of blades. On the other hand, the restrictions of processing technology for the downsizing of im- peller not only relatively enlarge the size of tip clearance but also make it difficult to shape the impeller with the i three-dimensional blade. Therefore, it is important to establish the design technology for the impeller with the two-dimensional blade which possesses the sufficient aerodynamic performance and enough strength to bear the centrifugal force caused by the high rotational speed. In this study, the flow in two types of impeller with the two-dimensional blade which have different meridional configuration was analyzed numerically, The computed results clarified the influence of the meridional configuration on the loss generations in the impeller passage.展开更多
The existing research on improving the hydraulic performance of centrifugal pumps mainly focuses on the design method and the parameter optimization. The traditional design method for centrifugal impellers relies more...The existing research on improving the hydraulic performance of centrifugal pumps mainly focuses on the design method and the parameter optimization. The traditional design method for centrifugal impellers relies more on experience of engineers that typically only satisfies the continuity equation of the fluid. In this study, on the basis of the direct and inverse iteration design method which simultaneously solves the continuity and motion equations of the fluid and shapes the blade geometry by controlling the wrap angle, three centrifugal pump impellers are designed by altering blade wrap angles while keeping other parameters constant. The three-dimensional flow fields in three centrifugal pumps are numerically simulated, and the simulation results illustrate that the blade with larger wrap angle has more powerful control ability on the flow pattern in impeller. The three pumps have nearly the same pressure distributions at the small flow rate, but the pressure gradient increase in the pump with the largest wrap angle is smoother than the other two pumps at the design and large flow rates. The pump head and efficiency are also influenced by the blade wrap angle. The highest head and efficiency are also observed for the largest angle. An experiment rig is designed and built to test the performance of the pump with the largest wrap angle. The test results show that the wide space of its efficiency area and the stability of its operation ensure the excellent performance of the design method and verify the numerical analysis. The analysis on influence of the blade wrap angle for centrifugal pump performance in this paper can be beneficial to the optimization design of the centrifugal pump.展开更多
The low power consumption of the near-critical compressor is the key factor for the high efficiency of supercritical CO_(2)Brayton cycle.In the numerical simulation of the compressor,the rapid changes in the thermophy...The low power consumption of the near-critical compressor is the key factor for the high efficiency of supercritical CO_(2)Brayton cycle.In the numerical simulation of the compressor,the rapid changes in the thermophysical properties of the CO_(2)near the critical point make it difficult to capture the condensation phenomenon.This paper investigates the influence of fluid physical properties on the condensation phenomenon.Firstly,the differences in the physical properties of CO_(2)in the SRK EOS(equation of state),PR EOS,and SW EOS are compared.Then,the simulation of nozzles and compressors were carried out and discussed.Results show that the condensation positions predicted by the three EOSs are basically the same.Compared with SW EOS,the disparities between the maximum condensation mass fraction predicted by the PR and SRK EOSs is5.7%and 11.5%,and that of total pressure ratio is 0.3%and 3.8%,respectively.The results show that PR EOS can be considered for numerical simulation in engineering practice.Since its physical property calculation results are closer to the actual physical properties while the physical properties change more gently,it has considerable accuracy and numerical stability.展开更多
To study the stall mechanism in a wide vaneless diffuser,a three-dimensional centrifugal compressor model was established.The numerical simulation method was used to study the fluid characteristics in a centrifugal co...To study the stall mechanism in a wide vaneless diffuser,a three-dimensional centrifugal compressor model was established.The numerical simulation method was used to study the fluid characteristics in a centrifugal compressor with a wide vaneless diffuser under stall conditions.The simulated results showed that the wide vaneless diffuser stall was related to the instability of the core flow.Due to the influence of the reflow,the core flows moved between the hub and shroud side and the directions were not consistent.This was called core flow distortion,which triggered the rotating stall.The reflow first appeared at the outlet boundary of the diffuser,and the reflux gradually expanded to the inside of the diffuser as the impeller rotated.Eventually,the reflux zones grew and merged,forming a stable low-speed fluid regiment,which produced a stall cell.The stall cells rotated around themselves with an opposite direction with impeller.展开更多
As demonstrated by former work,the holed casing treatment can be used to expand the stall margin of a centrifugal compressor with unshrouded impeller.In addition,the choked margin can also be expanded as experimental ...As demonstrated by former work,the holed casing treatment can be used to expand the stall margin of a centrifugal compressor with unshrouded impeller.In addition,the choked margin can also be expanded as experimental results indicated.Moreover,the compressor performance,especially the efficiency,on the whole working range is improved.As shown by experiments,the stall margin and choked margin of the compressor are extended,and the maximum efficiency improvement is 14%at the large flowrate of 1.386.Numerical simulations were carried out to analyze the flow in the impeller and in the holes in the case of large flowrate.The results indicate that in large flowrate conditions,there is a low-pressure region on the throat part of the impeller passage,leading to the bypass flows appearing in the holes,which means the flow area at the inlet of the impeller is increased.The bypass flow can also contribute to the decrease of the Mach number at the throat part near the shroud end-wall which implies that the choked margin is expanded.Besides,as the bypass flow would inhibit the development of the vertexes in the tip clearance and suppress the flow recirculation in the shroud end-wall region,both the pressure ratio and efficiency of the compressor are improved,which agrees well with the experiments.展开更多
This paper presents a method of forecasting stable operation of gas compressor unit (GCU) centrifugal supercharger (CFS) installed on a piping of compressor shops servicing gas pipelines. The stability of supercharger...This paper presents a method of forecasting stable operation of gas compressor unit (GCU) centrifugal supercharger (CFS) installed on a piping of compressor shops servicing gas pipelines. The stability of superchargers operation is assessed in relation to the phenomenon of surge. Solution of this problem amounts to the development and numerical analysis of a set of ordinary differential equations. The set describes transmission of gas through a compressor shop as a fluid dynamics model with lumped parameters. The proposed method is oriented to wide application by specialists working in the gas industry. The practical application of this method can use all-purpose programming and mathematical software available to specialists of gas companies.展开更多
Steady air injection upstream of the leading edge was used to increase the surge margin of a centrifugal compressor.To reveal the mechanism,steady numerical simulations were performed on a high pressure ratio centrifu...Steady air injection upstream of the leading edge was used to increase the surge margin of a centrifugal compressor.To reveal the mechanism,steady numerical simulations were performed on a high pressure ratio centrifugal compressor rotor operated with a rotor tip speed of 586 m/s.Eight different injection yaw angle with four different injection mass flow was performed to determine the configuration that provide the best results for the compression system studied in this work.The injection angle,α,was fifteen degree and the injectors were placed at short distance(ten percent of the inlet tip radius upstream of the compressor face) to achieve maximum control over the leading edge flow by varying individual injection parameters.The results show that at design speed(n=50 000 r/min) with injection flow rate more than 2% of the main flow rate and yaw angle between 20° and 30°,the mass flow rate at stall decreases for approximately 8%.But with higher injection rate,other compressor parameters were affected such as compressor efficiency and compressor total pressure ratio.展开更多
基金Supported by Chinese Specialized Research Fund for the Doctoral Program of Higher Education(20091101110014)the National Natural Science Foundation of China(51176013)
文摘A high speed and small mass-flow-rate centrifugal compressor with original and modified volute tongue shape was simulated by 3D viscous Navier-Stokes equations.A sharp and a round tongue of volute were modeled to compare their pressure ratios and efficiency characteristics.The flow fields around volute tongues were investigated;the velocity and pressure distributions of volute inlet were studied by unsteady simulation.Static pressure fluctuation near volute tongue was monitored and transformed into amplitude spectrum to identify blade passing frequency influence.The results show that the tongue simplification can cause certain difference on pressure ratio and efficiency.The pressure and velocity distribution of volute inlet indicate obvious circumferential distortion due to volute tongue especially at low mass flow rate.In addition,the static pressure pulsation of volute inlet and the noise level in diffuser and volute increase significantly under low mass flow operating condition.
基金the Deanship of Scientific Research,Research Center of College of Engineering, King Saud University for the financial support
文摘Extensive numerical investigations of the performance and flow structure in an unshrouded tandem-bladed centrifugal compressor are presented in comparison to a conventional compressor.Stage characteristics are explored for various tip clearance levels,axial spacings and circumferential clockings.Conventional impeller was modified to tandem-bladed design with no modifications in backsweep angle,meridional gas passage and camber distributions in order to have a true comparison with conventional design.Performance degradation is observed for both the conventional and tandem designs with increase in tip clearance.Linear-equation models for correlating stage characteristics with tip clearance are proposed.Comparing two designs,it is clearly evident that the conventional design shows better performance at moderate flow rates.However;near choke flow,tandem design gives better results primarily because of the increase in throat area.Surge point flow rate also seems to drop for tandem compressor resulting in increased range of operation.
基金supported by Chinese Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20101101110009)the National Natural Science Foundation of China (Grant No. 51176013)
文摘Three different inlet configurations,including a original straight pipe and two bend pipes with different axial length,for a high speed low mass flow centrifugal compressor were modeled with whole blade passages and simulated unsteadily by 3D viscous Navier-Stokes equations.The performance disparities of compressor stage were tested and verified by experiments in which dynamic pressure data acquisition of internal flow field was performed.As the result shows,the choke point decreases to lower mass flow rate due to the distortion caused by bend-pipe inlet and is aggravated as the rotation speed increases.The distortion effect spreads circumferentially in impeller and makes the flow structure varied.The longer axial distance bent inlet leads to larger radial distortion and heavy blockage at mid-span under large mass flow mainly causes compressor choke margin nar-rowed.Bend pipe distortion brings an impact up to diffuser on unsteady pressure pulsation caused by blades sweep and the impact appears more powerful when it is closer to volute tongue.
基金The research is supported by National Natural Science Foundation of China(51875410).
文摘Centrifugal compressors for the fuel cell vehicles often operate near the surge line compared with the turbocharger compressors.Low solidity and half vaned diffusers are recognized as good ways to improve the stability of the centrifugal compressor.The presented work investigated four diffuser configurations (i.e.,the vaneless diffuser (VLD),full-height low solidity vaned diffuser (LSVD),hub-side half vaned diffuser (HVD) and shroud-side half vaned diffuser (SVD)) through steady-state and unsteady numerical simulations.The results show that the best performance is achieved by the LSVD,HVD and SVD at the design,surge and choke conditions.The flow rate at the surge operating point of the HVD has decreased by 15.53% compared with the LSVD,and 9.21% compared with the VLD.At near surge operating point,a longitudinal suction side passage vortex is formed on the hub of the LSVD and rotates as circumferential stall cells.A hairpin vortex is formed along the leading edge and is dragged by the main flow along the suction side as a local vortex shedding.The mechanism of the stability improvement by half vaned diffusers is that the tip leakage vortex migrates from the clearance side to the vane mounting side and replenishes the low-momentum zone on the mounting side.The best position where the half vaned diffuser should be mounted is based on the impeller outlet flow conditions,namely,the location of the wake region,where the meridional velocity and relative stagnation pressure is low.
文摘A single stage ultra micro centrifugal compressor constituting ultra micro gas turbine is required to operate at high rotational speed in order to achieve the pressure ratio which establishes the gas turbine cycle. As a conse- quence, the aerodynamic losses can be increased by the interaction of a shock wave with the boundary layer on the blade surface. Moreover, the centrifugal force which exceeds the allowable s^ress of the impeller material can act on the root of blades. On the other hand, the restrictions of processing technology for the downsizing of im- peller not only relatively enlarge the size of tip clearance but also make it difficult to shape the impeller with the i three-dimensional blade. Therefore, it is important to establish the design technology for the impeller with the two-dimensional blade which possesses the sufficient aerodynamic performance and enough strength to bear the centrifugal force caused by the high rotational speed. In this study, the flow in two types of impeller with the two-dimensional blade which have different meridional configuration was analyzed numerically, The computed results clarified the influence of the meridional configuration on the loss generations in the impeller passage.
基金supported by National Natural Science Foundation of China(Grant Nos.51176088,51179090)National Basic Research Program of China(973 Program,Grant No.2009CB724304)+1 种基金General Financial Grant from the China Postdoctoral Science Foundation(Grant No.2011M500315)Open Research Fund Program of State Key Laboratory of Hydroscience and Engineering of China(Grant No.sklhse-2012-E-02)
文摘The existing research on improving the hydraulic performance of centrifugal pumps mainly focuses on the design method and the parameter optimization. The traditional design method for centrifugal impellers relies more on experience of engineers that typically only satisfies the continuity equation of the fluid. In this study, on the basis of the direct and inverse iteration design method which simultaneously solves the continuity and motion equations of the fluid and shapes the blade geometry by controlling the wrap angle, three centrifugal pump impellers are designed by altering blade wrap angles while keeping other parameters constant. The three-dimensional flow fields in three centrifugal pumps are numerically simulated, and the simulation results illustrate that the blade with larger wrap angle has more powerful control ability on the flow pattern in impeller. The three pumps have nearly the same pressure distributions at the small flow rate, but the pressure gradient increase in the pump with the largest wrap angle is smoother than the other two pumps at the design and large flow rates. The pump head and efficiency are also influenced by the blade wrap angle. The highest head and efficiency are also observed for the largest angle. An experiment rig is designed and built to test the performance of the pump with the largest wrap angle. The test results show that the wide space of its efficiency area and the stability of its operation ensure the excellent performance of the design method and verify the numerical analysis. The analysis on influence of the blade wrap angle for centrifugal pump performance in this paper can be beneficial to the optimization design of the centrifugal pump.
基金supports of National Natural Science Foundation of China(Grant No.52076079,52206010)Natural Science Foundation of Hebei Province,China(Grant No.E2020502013)Fundamental Research Funds for the Central Universities,China(Grant No.2021MS079)。
文摘The low power consumption of the near-critical compressor is the key factor for the high efficiency of supercritical CO_(2)Brayton cycle.In the numerical simulation of the compressor,the rapid changes in the thermophysical properties of the CO_(2)near the critical point make it difficult to capture the condensation phenomenon.This paper investigates the influence of fluid physical properties on the condensation phenomenon.Firstly,the differences in the physical properties of CO_(2)in the SRK EOS(equation of state),PR EOS,and SW EOS are compared.Then,the simulation of nozzles and compressors were carried out and discussed.Results show that the condensation positions predicted by the three EOSs are basically the same.Compared with SW EOS,the disparities between the maximum condensation mass fraction predicted by the PR and SRK EOSs is5.7%and 11.5%,and that of total pressure ratio is 0.3%and 3.8%,respectively.The results show that PR EOS can be considered for numerical simulation in engineering practice.Since its physical property calculation results are closer to the actual physical properties while the physical properties change more gently,it has considerable accuracy and numerical stability.
基金supported by National Natural Science Foundation of China(Grant No.11602085)Natural Science Foundation of Hebei Province,China(Grant No.E2016502098)Fundamental Research Funds for the Central Universities,China(Grant No.2018MS107)。
文摘To study the stall mechanism in a wide vaneless diffuser,a three-dimensional centrifugal compressor model was established.The numerical simulation method was used to study the fluid characteristics in a centrifugal compressor with a wide vaneless diffuser under stall conditions.The simulated results showed that the wide vaneless diffuser stall was related to the instability of the core flow.Due to the influence of the reflow,the core flows moved between the hub and shroud side and the directions were not consistent.This was called core flow distortion,which triggered the rotating stall.The reflow first appeared at the outlet boundary of the diffuser,and the reflux gradually expanded to the inside of the diffuser as the impeller rotated.Eventually,the reflux zones grew and merged,forming a stable low-speed fluid regiment,which produced a stall cell.The stall cells rotated around themselves with an opposite direction with impeller.
基金supported by the National Natural Science Foundation of China(Grant No.50776056)the High Technology Research and Development Program of China("863"Program)(Grant No. 2009AA05Z201)
文摘As demonstrated by former work,the holed casing treatment can be used to expand the stall margin of a centrifugal compressor with unshrouded impeller.In addition,the choked margin can also be expanded as experimental results indicated.Moreover,the compressor performance,especially the efficiency,on the whole working range is improved.As shown by experiments,the stall margin and choked margin of the compressor are extended,and the maximum efficiency improvement is 14%at the large flowrate of 1.386.Numerical simulations were carried out to analyze the flow in the impeller and in the holes in the case of large flowrate.The results indicate that in large flowrate conditions,there is a low-pressure region on the throat part of the impeller passage,leading to the bypass flows appearing in the holes,which means the flow area at the inlet of the impeller is increased.The bypass flow can also contribute to the decrease of the Mach number at the throat part near the shroud end-wall which implies that the choked margin is expanded.Besides,as the bypass flow would inhibit the development of the vertexes in the tip clearance and suppress the flow recirculation in the shroud end-wall region,both the pressure ratio and efficiency of the compressor are improved,which agrees well with the experiments.
文摘This paper presents a method of forecasting stable operation of gas compressor unit (GCU) centrifugal supercharger (CFS) installed on a piping of compressor shops servicing gas pipelines. The stability of superchargers operation is assessed in relation to the phenomenon of surge. Solution of this problem amounts to the development and numerical analysis of a set of ordinary differential equations. The set describes transmission of gas through a compressor shop as a fluid dynamics model with lumped parameters. The proposed method is oriented to wide application by specialists working in the gas industry. The practical application of this method can use all-purpose programming and mathematical software available to specialists of gas companies.
基金Supported by Chinese Specialized Research Fund for the Doctoral Program of Higher Education (20091101110014)the National Natural Science Foundation of China (51176013)National High Technology Research and Development Program of China("863" Program) (2007AA050502)
文摘Steady air injection upstream of the leading edge was used to increase the surge margin of a centrifugal compressor.To reveal the mechanism,steady numerical simulations were performed on a high pressure ratio centrifugal compressor rotor operated with a rotor tip speed of 586 m/s.Eight different injection yaw angle with four different injection mass flow was performed to determine the configuration that provide the best results for the compression system studied in this work.The injection angle,α,was fifteen degree and the injectors were placed at short distance(ten percent of the inlet tip radius upstream of the compressor face) to achieve maximum control over the leading edge flow by varying individual injection parameters.The results show that at design speed(n=50 000 r/min) with injection flow rate more than 2% of the main flow rate and yaw angle between 20° and 30°,the mass flow rate at stall decreases for approximately 8%.But with higher injection rate,other compressor parameters were affected such as compressor efficiency and compressor total pressure ratio.