期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Numerical Experiment of the Solid Particle Erosion of Bionic Configuration Blade of Centrifugal Fan 被引量:9
1
作者 Junqiu ZHANG Zhiwu HAN +3 位作者 Wei YIN Huiyuan WANG Chao GE Jialian JIANG 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2013年第1期16-24,共9页
In this paper, a bionic method was presented to improve the erosion resistance of blade of the centrifugal fan. A numerical investigation of the solid particle erosion on the standard and bionic configuration blade of... In this paper, a bionic method was presented to improve the erosion resistance of blade of the centrifugal fan. A numerical investigation of the solid particle erosion on the standard and bionic configuration blade of 4-72N_o10C centrifugal fan was presented. The numerical study employs computational fluid dynamics (CFD) software, based on a finite volume method, in which the discrete phase model was used to modele the solid particles flow, and the Eulerian conservation equation was adopt to simulate the continuous phase. Moreover, user-defined function was used to define wear equation. The various diameters of the particles were taken into account. The positions of collision of standard and bionic fan blades were discussed, and two kinds of centrifugal fan blade wear were compared. The results show that the particles from the incident source with different positions have different processes of turning and movement when enter into the impeller. The trajectories of flow in the fan channel are significantly different for the particles with different diameters. Bionic fan blade have lower erosion rate than the standard fan blade when the particle size is 20 μm. The anti-erosion mechanism of the bionic fan blade was discussed. 展开更多
关键词 BIONIC Numerical simulation centrifugal fan blade Erosion resistance
原文传递
Erosion-Resistant Surfaces Inspired by Tamarisk 被引量:13
2
作者 Zhiwu Han Wei Yin Junqiu Zhang Jialian Jiang Shichao Niu Luquan Ren 《Journal of Bionic Engineering》 SCIE EI CSCD 2013年第4期479-487,共9页
Tamarisk, a plant that thrives in arid and semi-arid regions, has adapted to blustery conditions by evolving extremely ef- fective and robust anti-erosion surface patterns. However, the details of these unique propert... Tamarisk, a plant that thrives in arid and semi-arid regions, has adapted to blustery conditions by evolving extremely ef- fective and robust anti-erosion surface patterns. However, the details of these unique properties and their structural basis are still unexplored. In this paper, we demonstrate that the tamarisk surface only suffers minor scratches under wind-sand mixture erosion. The results show that the anti-erosion property of bionic sample, inspired by tamarisk surface with different surface morphologies, can be attributed to the flow rotating in the grooves that reduces the particle impact speed. Furthermore, the simulation and experiment on the erosion wear behavior of the bionic samples and bionic centrifugal fan blades show that the bionic surface with V-type groove exhibits the best erosion resistance. The bionic surface on centrifugal fan blades with opti- mum parameters can effectively improve anti-erosion property by 28.97%. This paper show more opportunities for bionic application in improving the anti-erosion performance of moving parts that work under dirt and sand particle environment, such as helicopter rotor blades, airplane propellers, rocket motor nozzles, and pipes that regularly wear out from erosion. 展开更多
关键词 TAMARISK ANTI-EROSION numerical simulation bionic centrifugal fan blades
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部