Alumina ceramics are widely used in many fields such as cutting tools,laser shock materials,roadbed board and refractory.Herein,Al_(2)O_(3)ceramics are prepared by a low-cost pressureless sintering technology,using th...Alumina ceramics are widely used in many fields such as cutting tools,laser shock materials,roadbed board and refractory.Herein,Al_(2)O_(3)ceramics are prepared by a low-cost pressureless sintering technology,using the binary sintering aids of MgO and SiO_(2).The effects of sintering temperature and the ratio of binary sintering aids on the mechanical properties and microstructure of Al_(2)O_(3)ceramics are investigated.A spinel second phase(MgAl_(2)O_(4))is found out by the analysis of the results of XRD and EDS when MgO and SiO_(2)are introduced in the samples.The optimum properties are found when MgO content is 20 wt.%based on the total sintering aids and the sintering temperature is 1550℃.The bending strength and the bulk density reach a maximum value of 314 MPa and 3.73 g/cm^(3),respectively.The addition of appropriate amount of SiO_(2)makes the formation of liquid phase sintering and the removal of large pores.Meanwhile,a small amount of magnesium oxide doping has an effect on the grain refinement from the microstructure of the sample.Therefore,it is believed that MgO and SiO_(2)are the ideal sintering aids for promoting the densification and property of alumina ceramics.展开更多
The Johnson-Holmquist constitutive ceramic model is re-implemented into the LS_ DYNA3D program to simulate the penetration of long rod projectile into ceramic/armor steel composite targets. The damage evolution, fract...The Johnson-Holmquist constitutive ceramic model is re-implemented into the LS_ DYNA3D program to simulate the penetration of long rod projectile into ceramic/armor steel composite targets. The damage evolution, fracture propagation, and spall damage in the ceramic/armor targets is represented during the simulation procedure and the accuracy of the penetration depth comparing between the simulating and experimental results is reliable with an error less than 8 %. The relationship between the mass efficiency factor, differential factor and ceramic tiles thickness is given out for the penetration results with/without a cover plate.展开更多
Alumina yttria composite oxide coating was obtained on the stainless steel through the pyrolysis of aluminium nitrate and yttrium nitrate by flame spraying in the open atmospheric environment. The isothermal oxidatio...Alumina yttria composite oxide coating was obtained on the stainless steel through the pyrolysis of aluminium nitrate and yttrium nitrate by flame spraying in the open atmospheric environment. The isothermal oxidation behaviour of the specimens coated with alumina yttria was investigated in air at the temperature of 1273 K. The results show that coating can promote the selective oxidation of chromium in the alloy and improve the high temperature corrosion resistance of the stainless steel.展开更多
In order to join alumina ceramic to 5A05 aluminum alloy and obtain the excellent airtightness of joints whose maximum service temperature is 623 K, transient liquid phase (TLP) bonding technique was ,investigated us...In order to join alumina ceramic to 5A05 aluminum alloy and obtain the excellent airtightness of joints whose maximum service temperature is 623 K, transient liquid phase (TLP) bonding technique was ,investigated using Ag-Cu-Ti alloy as interlayer. The wetting experimental results confirm that Ti can react with alumina ceramic at 833 K by adding 2 wt.% Ti in Sn. But during bonding alumina ceramic and 5A05 aluminum alloy with Ag-Cu-Ti interlayer at 833 K, Ti preferentially reacts with Al and there is no reaction layer on alumina ceramic/Ag-Cu-Ti interface, which finally results in a poorly airtight joint.展开更多
Significant energy saving effects can be made through the improvement of furnace refractories,especially the thermal insulation refractories. In this study,the preparation and the application of different alumina base...Significant energy saving effects can be made through the improvement of furnace refractories,especially the thermal insulation refractories. In this study,the preparation and the application of different alumina based porous ceramics were briefly introduced. Alumina based porous ceramics were prepared combined foaming method with gelcasting,sol- gel process or cement curing process. The influences of different preparation methods on the sintering shrinkage, porosity, phase composition, microstructure, compressive strength and thermal conductivity were discussed. Alumina based porous ceramics with relatively high strength and low thermal conductivity could be obtained through the above mentioned methods. Compared with the traditional lining materials,about 40% energy could be saved when they were used as the furnace wall.展开更多
Sliding friction and wear behavior of two different grain-size aluminas (average grain size = 0.6 and 2 μm) was studied in physiological saline environment. Relationship between time and wear loss was observed. The...Sliding friction and wear behavior of two different grain-size aluminas (average grain size = 0.6 and 2 μm) was studied in physiological saline environment. Relationship between time and wear loss was observed. The wear loss volume increased with increased sliding time and fine-grained alumina exhibits a lower value. In the initial wear-in period, grains pull-out caused by grain-boundary microcracking is the dominant wear mechanism of submicron grained alumina. In the case of alumina of large grain size, intergranular and transgranular fracture is the basic wear mechanism. As the sliding time increases, compaction of wear debris on sliding surface of fine and coarsen alumina determines the wear characteristics.展开更多
The alumina ceramics with the homogeneous microstructure and the higher density were fabricated via the modified-starch consolidation process by 1.0 wt% of a modified starch as a consolidator/ binder. The swelling beh...The alumina ceramics with the homogeneous microstructure and the higher density were fabricated via the modified-starch consolidation process by 1.0 wt% of a modified starch as a consolidator/ binder. The swelling behavior of the modified oxidized tapioca starch was analyzed by optical microscope, and two other corn starches (common corn starch and high amylose corn starch) were also analyzed for comparison. The modified starch used as a binder for the consolidation swelled at about 55 ℃, began to gelatinize at 65 ℃ and then was completely gelatinized at 75 ℃. But the corn starches could not be completely gelatinized even at 80 ℃ for 1 h. The high-strength green bodies (10.6 MPa) with the complex shapes were produced. The green bodies were sintered without any binder burnout procedure at 1 700 ℃ and a relative density of 95.3% was obtained for the sintered bodies, which is similar to that of the sintered sample formed by conventional slip casting. In addition, the effect of temperature on the apparent viscosity of the starch/alumina slurry in the process was investigated, and the corresponding mechanism for the starch consolidation was discussed.展开更多
The influence of various alumina additions on the optical property of zirconia/alumina composite ceramics was investigated. The relative sintered densities, transmittances, color and the microstructure of the composit...The influence of various alumina additions on the optical property of zirconia/alumina composite ceramics was investigated. The relative sintered densities, transmittances, color and the microstructure of the composite ceramics were studied. The experimental results showed that the relative sintered densities and transmittances decreased with alumina addition. The lightness increased obviously but the chroma change was small. Pure zirconia nanopowders sintered densely could obtain the relatively high transmittance, while the transmittance and the lightness of slight addition changed significantly. The zirconia/alumina composite ceramics with alumina addition less than 7.5wt% could achieve the relatively stable and reliable optical properties.展开更多
To reuse roller waste as a raw material of high performance green ceramic balls, three kinds of white alumina ceramic balls whose wear resistance were 2-3 times of the best high alumina ceramic ball with 90% Al2O3 wer...To reuse roller waste as a raw material of high performance green ceramic balls, three kinds of white alumina ceramic balls whose wear resistance were 2-3 times of the best high alumina ceramic ball with 90% Al2O3 were prepared, and the Al2O3 content of the prepared balls was 75%. It is found that the effect of calcia and magnesia on the wear resistance of ceramic balls is contrast to the accepted one: the wear rate of the ceramic balls prepared in CaO-Al2O3-SiO2 system is the lowest and the wear rate of the ceramic balls prepared in MgO-Al2O3-SiO2 is the highest. The main crystal phase of the ceramic ball is mullite and corundum. The ceramic ball granular is uniform and fine with 4-5 μm average size. The pore diameter is about 2 μm. The wear way of the ceramic balls is mainly transcrystalline fracture.展开更多
Supr fine alumina powder with high pu- rity (mean particle size isless than 0.35 μm) were used as main starting material for sinteringalumina ceramic. A multiple additive MgO-ZrO_2(Y_2O_3) washomogeneously added into...Supr fine alumina powder with high pu- rity (mean particle size isless than 0.35 μm) were used as main starting material for sinteringalumina ceramic. A multiple additive MgO-ZrO_2(Y_2O_3) washomogeneously added into the batch by the chemical coprecipitationmethod. Sintering of alumina bioceramic at low tempera- ture(<1600deg C) was achieved resulting in a dense and high strengthalumina ceramic with the bending strength up to 382 MPA and animproved fracture toughness. Mecha- nism that the multiple additivespromote the sintering of a- lumina ceramic is discussed on the baseof XRD and SEM analysis.展开更多
At present ESG (Electrostatic Suspended Gyro) is the most precise inertia element in the world. The electrode bowl, which has direct effect on the precision of ESG, is a key part to ESG. Through the analysis of the fu...At present ESG (Electrostatic Suspended Gyro) is the most precise inertia element in the world. The electrode bowl, which has direct effect on the precision of ESG, is a key part to ESG. Through the analysis of the function and characteristic of the electrode bowl in hollow rotor ESG and the present situation of new material development in the world, the alumina ceramic is regarded as the best material for the electrode bowl of hollow rotor ESG. By analyzing the present situation of alumina ceramic in the world, main technique requirements have been put forward for the alumina ceramic of ESG electrode bowl which is also fit for solid rotor ESG.展开更多
Porous alumina of regular spherical particles was fabricated with the spark plasma sintering (SPS) and then compared to those obtained through conventional hot pressing (HP). The effects of the parameters of the h...Porous alumina of regular spherical particles was fabricated with the spark plasma sintering (SPS) and then compared to those obtained through conventional hot pressing (HP). The effects of the parameters of the heating process on porosity were also investigated, Microstructural studies suggest that porous ingots including regular pores be made out of regular spherical alumina particles due to the close sphere packages. A comparative study on the relative necks of the specimens produced by SPS and HP indicates an enhancement of neck growth with SPS. Contrasting the theoretical values to the experimental results over the relative necks indicates that a proper relationship between the relative necks and the porosity can be established by a sintering model.展开更多
This paper introduces the characteristic of microwave sintering,introduces and analyses the process of microwave sintering of thealumina ceramics, moreover, compared with the experiments ofconventional sintering metho...This paper introduces the characteristic of microwave sintering,introduces and analyses the process of microwave sintering of thealumina ceramics, moreover, compared with the experiments ofconventional sintering method. Based on the research, some resultsare obtained, and experimental basis for microwave sintering ofceramics is put forward.展开更多
The porous alumina ceramics with lamellar structure were fabricated successfully by freeze casting. The viscosities of alumina slurries, pore structures, porosities and mechanical properties of the sintered ceramics w...The porous alumina ceramics with lamellar structure were fabricated successfully by freeze casting. The viscosities of alumina slurries, pore structures, porosities and mechanical properties of the sintered ceramics were investigated by introducing both types of alcohols as water solidification modifier into the initial slurries, such as ethanol and 1-propanol. With the addition of ethanol or 1-propanol, the viscosities of slurries increased and porosities of sintered ceramics decreased. The compressive strengths of the sintered porous alumina ceramics were improved due to a good connectivity between lamellae with the addition of both types of alcohols. The lowest porosities of 68.52% and 73.72% and highest compressive strengths of 18.2 MPa and 15.0 MPa were obtained by the addition of 30% ethanol in mass fraction and 1-propanol, respectively.展开更多
Sea urchin spines were chosen as a model system for biomimetic ceramics obtained using starch-blended slip casting. Porous alumina ceramics with cap-shaped layers with different alternating porosities were found to ha...Sea urchin spines were chosen as a model system for biomimetic ceramics obtained using starch-blended slip casting. Porous alumina ceramics with cap-shaped layers with different alternating porosities were found to have superior fracture behavior under bulk compression compared to ceramics with uniform porosity.They fail in a cascading manner,absorbing high amounts of energy during extended compression paths.The porosity variation in an otherwise single phase material mimicks the architectural microstructure design of sea urchin spines of Heterocentrotus mammillatus,which are promising model materials for impact protection.展开更多
Polycrystalline ceramics have heterogeneous meso-structures which result in high singularity in stress distribution. Based on this, a progressive fragment model was proposed which describes the failure wave formation ...Polycrystalline ceramics have heterogeneous meso-structures which result in high singularity in stress distribution. Based on this, a progressive fragment model was proposed which describes the failure wave formation and propagation in shocked ceramics. The governing equation of the failure wave was characterized by inelastic bulk strain with material damage and fracture. And the inelastic bulk strain consists of dilatant strain from nucleation and expansion of microcracks and condensed strain from collapse of original pores. Numerical simulation of the free surface velocity was performed in good agreement with planar impact experiments on 92.93% aluminas at China Academy of Engineering Physics. And the longitudinal, lateral and shear stress histories upon the arrival of the failure wave were predicted, which present the diminished shear strength and lost spall strength in the failed layer.展开更多
An alumina coating was developed on mild carbon steel by plasma spraying and then modified by laser remelting.Some characteristics of plasma sprayed ceramic coating before and after laser remelting,such as microstruct...An alumina coating was developed on mild carbon steel by plasma spraying and then modified by laser remelting.Some characteristics of plasma sprayed ceramic coating before and after laser remelting,such as microstructure,wear resistance, heat shock resistance,hot corrosion property and bond strength,have been investigated in this paper.展开更多
Pure alumina ceramic tube and 95 alumina ceramic (the ceramic with 95.84% alumina) tube were prepared by using self-prepared alumina micrometer powder without agglomeration as raw material. The ceramic green was sha...Pure alumina ceramic tube and 95 alumina ceramic (the ceramic with 95.84% alumina) tube were prepared by using self-prepared alumina micrometer powder without agglomeration as raw material. The ceramic green was shaped by isostatic pressing and sintered at different temperature from 800 to 1 600 ℃ for 2 h. The 95 ceramic tube sintered at 1 550 ℃ for 2 h had mean particle size of 4 μm, bend strength of 437 MPa and volume density of 3.714 g/cm3. Shape memory effect during sintering was observed. XRD results showed that no phase transition occurred during shape memory process, which indicated that shape memory effect was not caused by phase transition. Several probable causes of the alumina ceramic shape memory effect were discussed in this paper.展开更多
Ceramic slurry of 78 mass%solid loading was prepared using photosensitive acrylic resin and dispersant SP-710 as the liquid phase,Al_(2)O_(3) powder(d50=2.38μm)and TiO_(2) powder additive as the solid phase.Alumina c...Ceramic slurry of 78 mass%solid loading was prepared using photosensitive acrylic resin and dispersant SP-710 as the liquid phase,Al_(2)O_(3) powder(d50=2.38μm)and TiO_(2) powder additive as the solid phase.Alumina ceramics were prepared by DLP,sintering for 4 h at 1450,1500,1550 or 1600℃,respectively.The effects of the TiO_(2) addition(0,1%,2%,3%and 5%,by mass)on the properties of the ceramics were studied.The results show that the addition of TiO_(2) can improve the sintering of Al_(2)O_(3) ceramics,significantly improve the densification,and reduce the sintering temperature.With the optimum TiO_(2) addition of 3%and the optimum sintering temperature of 1600℃,the obtained Al_(2)O_(3) ceramics have shrinkage of 15.7%,15.8%and 23.8%at the x axis,the y axis,and the z axis,respectively,the porosity of 2.4%,the bulk density of 3.74 g·cm-3 and the three-point bending strength of 251.1 MPa.Compared with the undoped alumina ceramics,the doped alumina ceramic has increased bulk density by 0.56 g·cm-3,decreased apparent porosity from 20.2%to 2.4%,and the three-point bending strength increases by 2.5 times.Therefore,the density and the strength of DLP prepared ceramics can be improved effectively by adding an appropriate amount of TiO_(2),and the performance of the DLP prepared ceramics is close to that of the pressed samples.Thus,it is hopeful to apply DLP in refractories field.展开更多
High alumina slag will cause severe corrosion at the interface of alumina refractory,and the wetting behavior of slag is a key factor influencing the corrosion resistance of refractory ceramics.The static magnetic fie...High alumina slag will cause severe corrosion at the interface of alumina refractory,and the wetting behavior of slag is a key factor influencing the corrosion resistance of refractory ceramics.The static magnetic field is a promising solution for improvement in the slag resistance of refractory.The wetting of alumina refractory ceramics with different basicities of high alumina slags under a weak static magnetic field was analyzed,given that a weak static magnetic field can affect the corrosion behavior of refractory ceramics.Taking slag S_(3) as an example,when there was an external static magnetic field of 1.0 mT at 1600 ℃,the thickness of calcium aluminate reaction layer at the interface decreased by 36.7%,the denting depth of interface decreased by 35.6%,and the apparent wetting angle increased by 20%.The living radicals and their formation path in oxide melts were verified by first-principles calculation combined with electron paramagnetic resonance spectroscopy analysis.The influence of the flux density of a weak static magnetic field on the wetting behavior of slags was also explored.The contact angle of the slags increased owing to the inhibitory effect of magnetic field on the radicalinvolved reaction at the interface of the slag and the alumina refractory ceramic.The relationships between the magnetic flux density,diffusion coefficient,slag microstructure(hyperfine coupling constant),and contact angle were established.This provides a theoretical basis for the field control of radical involved reactive wetting between inorganic oxide slags and solid oxide ceramics.展开更多
基金Projects(11772207,U2130128)supported by the National Natural Science Foundation of ChinaProjects(E2019210042,E2017210065)supported by the Natural Science Foundation of Hebei Province,China+3 种基金Project(QN2019137)supported by the Natural Science Foundation of the Hebei Education Department,ChinaProject(A2019210204)supported by the Natural Science Foundation of Hebei Province for Distinguished Young Scholars,ChinaProject(216Z4302G)supported by Central Government Guiding Local Science and Technology Development,ChinaProject supported by Youth Top-notch Talents Supporting Plan of Hebei Province,China。
文摘Alumina ceramics are widely used in many fields such as cutting tools,laser shock materials,roadbed board and refractory.Herein,Al_(2)O_(3)ceramics are prepared by a low-cost pressureless sintering technology,using the binary sintering aids of MgO and SiO_(2).The effects of sintering temperature and the ratio of binary sintering aids on the mechanical properties and microstructure of Al_(2)O_(3)ceramics are investigated.A spinel second phase(MgAl_(2)O_(4))is found out by the analysis of the results of XRD and EDS when MgO and SiO_(2)are introduced in the samples.The optimum properties are found when MgO content is 20 wt.%based on the total sintering aids and the sintering temperature is 1550℃.The bending strength and the bulk density reach a maximum value of 314 MPa and 3.73 g/cm^(3),respectively.The addition of appropriate amount of SiO_(2)makes the formation of liquid phase sintering and the removal of large pores.Meanwhile,a small amount of magnesium oxide doping has an effect on the grain refinement from the microstructure of the sample.Therefore,it is believed that MgO and SiO_(2)are the ideal sintering aids for promoting the densification and property of alumina ceramics.
文摘The Johnson-Holmquist constitutive ceramic model is re-implemented into the LS_ DYNA3D program to simulate the penetration of long rod projectile into ceramic/armor steel composite targets. The damage evolution, fracture propagation, and spall damage in the ceramic/armor targets is represented during the simulation procedure and the accuracy of the penetration depth comparing between the simulating and experimental results is reliable with an error less than 8 %. The relationship between the mass efficiency factor, differential factor and ceramic tiles thickness is given out for the penetration results with/without a cover plate.
文摘Alumina yttria composite oxide coating was obtained on the stainless steel through the pyrolysis of aluminium nitrate and yttrium nitrate by flame spraying in the open atmospheric environment. The isothermal oxidation behaviour of the specimens coated with alumina yttria was investigated in air at the temperature of 1273 K. The results show that coating can promote the selective oxidation of chromium in the alloy and improve the high temperature corrosion resistance of the stainless steel.
基金This work was supported by the National Natural Science Foundation of China ( No. 50705022).
文摘In order to join alumina ceramic to 5A05 aluminum alloy and obtain the excellent airtightness of joints whose maximum service temperature is 623 K, transient liquid phase (TLP) bonding technique was ,investigated using Ag-Cu-Ti alloy as interlayer. The wetting experimental results confirm that Ti can react with alumina ceramic at 833 K by adding 2 wt.% Ti in Sn. But during bonding alumina ceramic and 5A05 aluminum alloy with Ag-Cu-Ti interlayer at 833 K, Ti preferentially reacts with Al and there is no reaction layer on alumina ceramic/Ag-Cu-Ti interface, which finally results in a poorly airtight joint.
基金Financial supports from the National Natural Science Foundation of China ( No. 51272240,51202225,51402265 )International S&T Cooperation Program of China ( No. 2014DFA50240)
文摘Significant energy saving effects can be made through the improvement of furnace refractories,especially the thermal insulation refractories. In this study,the preparation and the application of different alumina based porous ceramics were briefly introduced. Alumina based porous ceramics were prepared combined foaming method with gelcasting,sol- gel process or cement curing process. The influences of different preparation methods on the sintering shrinkage, porosity, phase composition, microstructure, compressive strength and thermal conductivity were discussed. Alumina based porous ceramics with relatively high strength and low thermal conductivity could be obtained through the above mentioned methods. Compared with the traditional lining materials,about 40% energy could be saved when they were used as the furnace wall.
基金Funded by the National Natural Science Foundation of China(Nos.51102289 and 50975302)the Key Laboratory of Inorganic function material and device,Chinese Academy of Sciences(KLIFMD-2011-04)
文摘Sliding friction and wear behavior of two different grain-size aluminas (average grain size = 0.6 and 2 μm) was studied in physiological saline environment. Relationship between time and wear loss was observed. The wear loss volume increased with increased sliding time and fine-grained alumina exhibits a lower value. In the initial wear-in period, grains pull-out caused by grain-boundary microcracking is the dominant wear mechanism of submicron grained alumina. In the case of alumina of large grain size, intergranular and transgranular fracture is the basic wear mechanism. As the sliding time increases, compaction of wear debris on sliding surface of fine and coarsen alumina determines the wear characteristics.
基金the Foundation of National Defence Science and Technology of China(No.51412020203JW1608)
文摘The alumina ceramics with the homogeneous microstructure and the higher density were fabricated via the modified-starch consolidation process by 1.0 wt% of a modified starch as a consolidator/ binder. The swelling behavior of the modified oxidized tapioca starch was analyzed by optical microscope, and two other corn starches (common corn starch and high amylose corn starch) were also analyzed for comparison. The modified starch used as a binder for the consolidation swelled at about 55 ℃, began to gelatinize at 65 ℃ and then was completely gelatinized at 75 ℃. But the corn starches could not be completely gelatinized even at 80 ℃ for 1 h. The high-strength green bodies (10.6 MPa) with the complex shapes were produced. The green bodies were sintered without any binder burnout procedure at 1 700 ℃ and a relative density of 95.3% was obtained for the sintered bodies, which is similar to that of the sintered sample formed by conventional slip casting. In addition, the effect of temperature on the apparent viscosity of the starch/alumina slurry in the process was investigated, and the corresponding mechanism for the starch consolidation was discussed.
基金Funded by the National High-Tech Research and Development Program of China (863 Program) (No. 2006AA03Z440)
文摘The influence of various alumina additions on the optical property of zirconia/alumina composite ceramics was investigated. The relative sintered densities, transmittances, color and the microstructure of the composite ceramics were studied. The experimental results showed that the relative sintered densities and transmittances decreased with alumina addition. The lightness increased obviously but the chroma change was small. Pure zirconia nanopowders sintered densely could obtain the relatively high transmittance, while the transmittance and the lightness of slight addition changed significantly. The zirconia/alumina composite ceramics with alumina addition less than 7.5wt% could achieve the relatively stable and reliable optical properties.
基金the National Natural Science Fundation of China(No.50272016),Guangxi 2003 Degree Authorzation Office academic Construction Fun,and Natural Science Fund of Guangxi Education Department(No.[2004]4)
文摘To reuse roller waste as a raw material of high performance green ceramic balls, three kinds of white alumina ceramic balls whose wear resistance were 2-3 times of the best high alumina ceramic ball with 90% Al2O3 were prepared, and the Al2O3 content of the prepared balls was 75%. It is found that the effect of calcia and magnesia on the wear resistance of ceramic balls is contrast to the accepted one: the wear rate of the ceramic balls prepared in CaO-Al2O3-SiO2 system is the lowest and the wear rate of the ceramic balls prepared in MgO-Al2O3-SiO2 is the highest. The main crystal phase of the ceramic ball is mullite and corundum. The ceramic ball granular is uniform and fine with 4-5 μm average size. The pore diameter is about 2 μm. The wear way of the ceramic balls is mainly transcrystalline fracture.
文摘Supr fine alumina powder with high pu- rity (mean particle size isless than 0.35 μm) were used as main starting material for sinteringalumina ceramic. A multiple additive MgO-ZrO_2(Y_2O_3) washomogeneously added into the batch by the chemical coprecipitationmethod. Sintering of alumina bioceramic at low tempera- ture(<1600deg C) was achieved resulting in a dense and high strengthalumina ceramic with the bending strength up to 382 MPA and animproved fracture toughness. Mecha- nism that the multiple additivespromote the sintering of a- lumina ceramic is discussed on the baseof XRD and SEM analysis.
文摘At present ESG (Electrostatic Suspended Gyro) is the most precise inertia element in the world. The electrode bowl, which has direct effect on the precision of ESG, is a key part to ESG. Through the analysis of the function and characteristic of the electrode bowl in hollow rotor ESG and the present situation of new material development in the world, the alumina ceramic is regarded as the best material for the electrode bowl of hollow rotor ESG. By analyzing the present situation of alumina ceramic in the world, main technique requirements have been put forward for the alumina ceramic of ESG electrode bowl which is also fit for solid rotor ESG.
基金National Natural Science Foundation of China (50272047)Ministry of Education of China (704034)
文摘Porous alumina of regular spherical particles was fabricated with the spark plasma sintering (SPS) and then compared to those obtained through conventional hot pressing (HP). The effects of the parameters of the heating process on porosity were also investigated, Microstructural studies suggest that porous ingots including regular pores be made out of regular spherical alumina particles due to the close sphere packages. A comparative study on the relative necks of the specimens produced by SPS and HP indicates an enhancement of neck growth with SPS. Contrasting the theoretical values to the experimental results over the relative necks indicates that a proper relationship between the relative necks and the porosity can be established by a sintering model.
基金the National Advanced Manerale Commotee China 563 Plan
文摘This paper introduces the characteristic of microwave sintering,introduces and analyses the process of microwave sintering of thealumina ceramics, moreover, compared with the experiments ofconventional sintering method. Based on the research, some resultsare obtained, and experimental basis for microwave sintering ofceramics is put forward.
基金Projects(20110162130003,20110162110044)supported by the PhD Programs Foundation of Ministry of Education of ChinaProjects(51172288,51072235)supported by the National Natural Science Foundation of ChinaProject(11JJ1008)supported by Hunan Provincial Natural Science Foundation of China
文摘The porous alumina ceramics with lamellar structure were fabricated successfully by freeze casting. The viscosities of alumina slurries, pore structures, porosities and mechanical properties of the sintered ceramics were investigated by introducing both types of alcohols as water solidification modifier into the initial slurries, such as ethanol and 1-propanol. With the addition of ethanol or 1-propanol, the viscosities of slurries increased and porosities of sintered ceramics decreased. The compressive strengths of the sintered porous alumina ceramics were improved due to a good connectivity between lamellae with the addition of both types of alcohols. The lowest porosities of 68.52% and 73.72% and highest compressive strengths of 18.2 MPa and 15.0 MPa were obtained by the addition of 30% ethanol in mass fraction and 1-propanol, respectively.
基金funded by European sources within the ERASMUS-SOCRATES program
文摘Sea urchin spines were chosen as a model system for biomimetic ceramics obtained using starch-blended slip casting. Porous alumina ceramics with cap-shaped layers with different alternating porosities were found to have superior fracture behavior under bulk compression compared to ceramics with uniform porosity.They fail in a cascading manner,absorbing high amounts of energy during extended compression paths.The porosity variation in an otherwise single phase material mimicks the architectural microstructure design of sea urchin spines of Heterocentrotus mammillatus,which are promising model materials for impact protection.
基金Project supported by the National Natural Science Foundation of China (Nos.10376046, 10272047) and the Defense Science Technology Key Lab Foundation of China (Nos.99JS75, 22JN2001)
文摘Polycrystalline ceramics have heterogeneous meso-structures which result in high singularity in stress distribution. Based on this, a progressive fragment model was proposed which describes the failure wave formation and propagation in shocked ceramics. The governing equation of the failure wave was characterized by inelastic bulk strain with material damage and fracture. And the inelastic bulk strain consists of dilatant strain from nucleation and expansion of microcracks and condensed strain from collapse of original pores. Numerical simulation of the free surface velocity was performed in good agreement with planar impact experiments on 92.93% aluminas at China Academy of Engineering Physics. And the longitudinal, lateral and shear stress histories upon the arrival of the failure wave were predicted, which present the diminished shear strength and lost spall strength in the failed layer.
文摘An alumina coating was developed on mild carbon steel by plasma spraying and then modified by laser remelting.Some characteristics of plasma sprayed ceramic coating before and after laser remelting,such as microstructure,wear resistance, heat shock resistance,hot corrosion property and bond strength,have been investigated in this paper.
基金Funded by the Natural Science Foundation of Guangxi University for Nationalities(Nos.200702YJ19 and 2008ZD011)National Natural Science Foundation of China(No.51172049)+2 种基金Special Prophase Project of 973 Program Research of China(No.2012CB722804)Guangxi Higher Education Institutes Talent Highland Innovation Team Scheme(No.GJR201147-12)Construction Project of Key Laboratory of Chemical and Biological Transformation Process of Guangxi Higher Education Institutes(No.GJKY20129)
文摘Pure alumina ceramic tube and 95 alumina ceramic (the ceramic with 95.84% alumina) tube were prepared by using self-prepared alumina micrometer powder without agglomeration as raw material. The ceramic green was shaped by isostatic pressing and sintered at different temperature from 800 to 1 600 ℃ for 2 h. The 95 ceramic tube sintered at 1 550 ℃ for 2 h had mean particle size of 4 μm, bend strength of 437 MPa and volume density of 3.714 g/cm3. Shape memory effect during sintering was observed. XRD results showed that no phase transition occurred during shape memory process, which indicated that shape memory effect was not caused by phase transition. Several probable causes of the alumina ceramic shape memory effect were discussed in this paper.
文摘Ceramic slurry of 78 mass%solid loading was prepared using photosensitive acrylic resin and dispersant SP-710 as the liquid phase,Al_(2)O_(3) powder(d50=2.38μm)and TiO_(2) powder additive as the solid phase.Alumina ceramics were prepared by DLP,sintering for 4 h at 1450,1500,1550 or 1600℃,respectively.The effects of the TiO_(2) addition(0,1%,2%,3%and 5%,by mass)on the properties of the ceramics were studied.The results show that the addition of TiO_(2) can improve the sintering of Al_(2)O_(3) ceramics,significantly improve the densification,and reduce the sintering temperature.With the optimum TiO_(2) addition of 3%and the optimum sintering temperature of 1600℃,the obtained Al_(2)O_(3) ceramics have shrinkage of 15.7%,15.8%and 23.8%at the x axis,the y axis,and the z axis,respectively,the porosity of 2.4%,the bulk density of 3.74 g·cm-3 and the three-point bending strength of 251.1 MPa.Compared with the undoped alumina ceramics,the doped alumina ceramic has increased bulk density by 0.56 g·cm-3,decreased apparent porosity from 20.2%to 2.4%,and the three-point bending strength increases by 2.5 times.Therefore,the density and the strength of DLP prepared ceramics can be improved effectively by adding an appropriate amount of TiO_(2),and the performance of the DLP prepared ceramics is close to that of the pressed samples.Thus,it is hopeful to apply DLP in refractories field.
基金supported by the National Natural Science Foundation of China(52272022)Key Program of the Natural Science Foundation of Hubei Province of China(2021CFA071).
文摘High alumina slag will cause severe corrosion at the interface of alumina refractory,and the wetting behavior of slag is a key factor influencing the corrosion resistance of refractory ceramics.The static magnetic field is a promising solution for improvement in the slag resistance of refractory.The wetting of alumina refractory ceramics with different basicities of high alumina slags under a weak static magnetic field was analyzed,given that a weak static magnetic field can affect the corrosion behavior of refractory ceramics.Taking slag S_(3) as an example,when there was an external static magnetic field of 1.0 mT at 1600 ℃,the thickness of calcium aluminate reaction layer at the interface decreased by 36.7%,the denting depth of interface decreased by 35.6%,and the apparent wetting angle increased by 20%.The living radicals and their formation path in oxide melts were verified by first-principles calculation combined with electron paramagnetic resonance spectroscopy analysis.The influence of the flux density of a weak static magnetic field on the wetting behavior of slags was also explored.The contact angle of the slags increased owing to the inhibitory effect of magnetic field on the radicalinvolved reaction at the interface of the slag and the alumina refractory ceramic.The relationships between the magnetic flux density,diffusion coefficient,slag microstructure(hyperfine coupling constant),and contact angle were established.This provides a theoretical basis for the field control of radical involved reactive wetting between inorganic oxide slags and solid oxide ceramics.