A design of the sandwich joint,steel/ ceramic/steel,was made for direct comparison be- tween tensile and flexural strength of ceramic/metal joint.The flexural strength is about twice as high as the tensile strength fo...A design of the sandwich joint,steel/ ceramic/steel,was made for direct comparison be- tween tensile and flexural strength of ceramic/metal joint.The flexural strength is about twice as high as the tensile strength for the same joint.The results also showed that the flexural test is more excellent than tensile test for joint with a high interracial bond strength.展开更多
Based on ANSYS FEM software, the distribution of residual stress in the diffusion bonding joints between Ti( C,N) metallic ceramic/interlayer/4OCr steel was calculated and experimentally ver^ed. The results showed t...Based on ANSYS FEM software, the distribution of residual stress in the diffusion bonding joints between Ti( C,N) metallic ceramic/interlayer/4OCr steel was calculated and experimentally ver^ed. The results showed that the trend on the distribution of residual stress field in the joints was not changed with the use of interlayer. The maximum residual stress was always located in metallic ceramic with area ranging from 1 mm to 4 mm to the interlayer. The maximum residual stress in the joints was also affected by diffusion temperature. The satellite pulse current during the initial stage on diffusion bonding can promote the formation of liquid film at the interface, by which diffusion temperature and loading pressure can be greatly decreased. The crack initiation was easily produced at the corner of Ti ( C, N) metallic ceramic close to the interlayer. If a higher residual stress produced in the joints, the crack was propagated into the whole ceramic.展开更多
Within the bonded interface of metal bars joint produced by conventional solid state bonding process ( such as flash welding, resistance butt welding, friction welding and so on), the inclusions are often present, w...Within the bonded interface of metal bars joint produced by conventional solid state bonding process ( such as flash welding, resistance butt welding, friction welding and so on), the inclusions are often present, which degrade the ductility of joint. A new process of transformation-diffusion brazing is proposed, in which an amorphous foil containing melting point depressant is preplaced between the interfaces to be joined, and the assembly is repeatedly heated/cooled without holding time at peak temperature. A low carbon steel bars, BNi-2 amorphous foil and resistance butt welding machine were used. The results show that surfuce contamination can be disrupted by the dissolution of base metal into molten interlayer in comparison with conventional process, and the ductility of joint can be improved by increasing the times of temperature cycles on line. In addition, transformation-diffusion brazing can be done with relatively simple and inexpensive system in comparison with transient liquid phase bonding.展开更多
A novel joining method,double-stage diffusion-brazing of an AZ31 magnesium alloy and a 304L austenitic stainless steel,was carried out using a pure copper interlayer.The solid-state diffusion bonding of 304L to copper...A novel joining method,double-stage diffusion-brazing of an AZ31 magnesium alloy and a 304L austenitic stainless steel,was carried out using a pure copper interlayer.The solid-state diffusion bonding of 304L to copper was conducted at 850 ℃ for 20 min followed by brazing to AZ31 at 520 ℃ and 495 ℃ for various time.Microstructural characteristics of the diffusion-brazed joints were investigated in detail.A defect free interface of Fe-Cu diffusion area appeared between the Cu alloy and the 304L steel.Cu-Mg reaction products were formed between AZ31 and Cu alloys.A layered structure including AZ31/Cu-Mg compounds/Cu/Fe-Cu diffusion layer/304L was present in the joint.With time prolonging,the reduction in the width of Cu layer was balanced by the increase in the width of Cu-Mg compounds zone.Microhardness peaks in the zone between AZ31 and Cu layer were attributed to the formation of Mg-Cu compounds in this zone.展开更多
文摘A design of the sandwich joint,steel/ ceramic/steel,was made for direct comparison be- tween tensile and flexural strength of ceramic/metal joint.The flexural strength is about twice as high as the tensile strength for the same joint.The results also showed that the flexural test is more excellent than tensile test for joint with a high interracial bond strength.
基金The authors are grateful to the financial support for this research from National Natural Science Foundation of China (Grant No. 51175259) , Jiangsu Science and Technology Planning Project (No. BK2011494) and University Science Research Project of Jiangsu Province ( 11KJAd30005 ).
文摘Based on ANSYS FEM software, the distribution of residual stress in the diffusion bonding joints between Ti( C,N) metallic ceramic/interlayer/4OCr steel was calculated and experimentally ver^ed. The results showed that the trend on the distribution of residual stress field in the joints was not changed with the use of interlayer. The maximum residual stress was always located in metallic ceramic with area ranging from 1 mm to 4 mm to the interlayer. The maximum residual stress in the joints was also affected by diffusion temperature. The satellite pulse current during the initial stage on diffusion bonding can promote the formation of liquid film at the interface, by which diffusion temperature and loading pressure can be greatly decreased. The crack initiation was easily produced at the corner of Ti ( C, N) metallic ceramic close to the interlayer. If a higher residual stress produced in the joints, the crack was propagated into the whole ceramic.
文摘Within the bonded interface of metal bars joint produced by conventional solid state bonding process ( such as flash welding, resistance butt welding, friction welding and so on), the inclusions are often present, which degrade the ductility of joint. A new process of transformation-diffusion brazing is proposed, in which an amorphous foil containing melting point depressant is preplaced between the interfaces to be joined, and the assembly is repeatedly heated/cooled without holding time at peak temperature. A low carbon steel bars, BNi-2 amorphous foil and resistance butt welding machine were used. The results show that surfuce contamination can be disrupted by the dissolution of base metal into molten interlayer in comparison with conventional process, and the ductility of joint can be improved by increasing the times of temperature cycles on line. In addition, transformation-diffusion brazing can be done with relatively simple and inexpensive system in comparison with transient liquid phase bonding.
基金Project(51205428) supported by the National Natural Science Foundation of ChinaProject(CDJRC10130011) supported by the Fundamental Research Funds for the Central Universities,China
文摘A novel joining method,double-stage diffusion-brazing of an AZ31 magnesium alloy and a 304L austenitic stainless steel,was carried out using a pure copper interlayer.The solid-state diffusion bonding of 304L to copper was conducted at 850 ℃ for 20 min followed by brazing to AZ31 at 520 ℃ and 495 ℃ for various time.Microstructural characteristics of the diffusion-brazed joints were investigated in detail.A defect free interface of Fe-Cu diffusion area appeared between the Cu alloy and the 304L steel.Cu-Mg reaction products were formed between AZ31 and Cu alloys.A layered structure including AZ31/Cu-Mg compounds/Cu/Fe-Cu diffusion layer/304L was present in the joint.With time prolonging,the reduction in the width of Cu layer was balanced by the increase in the width of Cu-Mg compounds zone.Microhardness peaks in the zone between AZ31 and Cu layer were attributed to the formation of Mg-Cu compounds in this zone.