The critical speeds for a vehicle turbocharger with hybrid ceramic ball bearing are researched. The ball bearing-rotor system produces resonance when it working in critical speed and that makes the turbocharger injury...The critical speeds for a vehicle turbocharger with hybrid ceramic ball bearing are researched. The ball bearing-rotor system produces resonance when it working in critical speed and that makes the turbocharger injury working for a long time. The calculation and analysis methods of the critical speed for the vehicle turbocharger are described. The critical speed is computed by two methods including Riccati transfer matrix and DyRoBeS finite element method for a vehicle turbocharger with hybrid ceramic ball bearing. The vibration experiment had been taken to validate the calculating result, Comparison between the results by two calculation methods and the test results show that the first critical speed differences are 6.47 % and 5.66 %, the second critical speed differences are 2.87 % and 2.94 % respectively. And then, the primary factors which influence the critical speed are analyzed, the conclusions will be helpful for the vehicle turbocharger bearing-rotor system design.展开更多
An experiment is conducted to investigate the effects of lubricant10#, which contains extreme pressure additives T304 and T305, on the rolling contact fatigue (RCF) life of the contact pairs of a Si3N4 ceramic ball ...An experiment is conducted to investigate the effects of lubricant10#, which contains extreme pressure additives T304 and T305, on the rolling contact fatigue (RCF) life of the contact pairs of a Si3N4 ceramic ball and a steel rod. The experimental investigation is carried out using a ball-rod RCF test rig. The results show that the extreme pressure additives increase the anti-contact-fatigue performance of ceramic balls; When the content of the additives varies from 1% to 5%, the increasing gradient of the RCF life curve decreases; And the oil sample with 1% T305 additive corresponds to the maximal gradient of the RCF life curve, with the RCF life being increased by about 10.77 times. The fatigue surface of the ceramic ball is analyzed with scanning electron microscope (SEM) and X-ray electron dispersion analysis(EDAX), and the physical model of extreme pressure additives' increasing the RCF life of the ceramic ball is proposed. It is found that the extreme pressure additives form a corrosive film and a transfer film on the surface of the ceramic ball, which decrease the surface tangential stress, and to increase the surface energy is the most effective means for increasing the RCF life.展开更多
In order to realize high speed machining,the special requirements for the transmission and sturctrue of CNC machine tool have to be satisfied.A high speed spindle unit driven by a built-in motor is developed.An oil-wa...In order to realize high speed machining,the special requirements for the transmission and sturctrue of CNC machine tool have to be satisfied.A high speed spindle unit driven by a built-in motor is developed.An oil-water heat exchange system is used for cooling the spindle motor.The spindle is supported by Si_4N_3 ceramic ball angular contact bearings. An oil-air lubricator is used to lubricate and cool the spindle bearings.Some special structures are taken for balancing the spindle.展开更多
To simplify the lubricating system for high-speed bearings and improve its reliability, grease lu-bricated high-speed hybrid ceramic bearings were theoretically and experimentally researched. Bearings with an outer ra...To simplify the lubricating system for high-speed bearings and improve its reliability, grease lu-bricated high-speed hybrid ceramic bearings were theoretically and experimentally researched. Bearings with an outer race of 62 mm and eleven 9.525-mm balls were investigated. Traction coefficient and flash temperature between the bearing races and the balls were calculated and the results show that the traction coefficient of Si3N4 hybrid ceramic bearings is 74% that of the steel AISI 440B ones at 30 000 r/min and 1750 N, and the flash temperature of the hybrid bearings is 49% that of steel ones. Simulating the high-speed bearing rotational conditions, the grease lubricated hybrid ceramic ball bearings were tested and the results show that the power consumption of hybrid ceramic bearing lubricated by grease D at 24 000 r/min and axial load 1750 N is 80% that of steel ones.展开更多
In this paper,the atomization characteristics of Si3N4 ceramic dry granulation affect the performance of Si3N4 ceramic bearing balls.In order to improve the dry granulation characteristics and the comprehensive perfo...In this paper,the atomization characteristics of Si3N4 ceramic dry granulation affect the performance of Si3N4 ceramic bearing balls.In order to improve the dry granulation characteristics and the comprehensive performance of Si3N4 ceramic bearing balls,the atomization mechanism of the spinning nozzle used for Si3N4 dry granulation was studied in detail.The interaction between air and binder in the pressure-swirl nozzle is analyzed based on VOF method,the modified realizable k−εturbulence model is used to simulate the flow field inside and outside the pressure-swirl nozzle,the effects of nozzle inlet parameters including the number of tangential inlets and the deflection angle of tangential inlets on the binder volume fraction,velocity distribution and pressure distribution are analyzed.The results show that when the number of tangential inlets increases from 1 to 4,the swirl strength of gas–liquid two-phase in the nozzle increases,the mean diameter of air core increases from 1.51 mm to 2.01 mm,and the spray cone angle increases from 18.5◦to 26.4◦.Besides,when the deflection angle of tangential inlet increases from 0◦to 15◦,the swirl strength of gas–liquid two-phase in the nozzle with the deflection angle of tangential inlet of 10◦is the largest,and the mean diameter of air core and spray cone angle is 3.04 mm and 30.7◦,respectively.Based on the atomization experiment platform of the electric control fuel system,the mean diameter of air core and spray cone angle are measured,the micromorphology of Si3N4 particles is observed,which verifies the correctness of numerical simulation.When the Si3N4 particles are prepared by dry granulation,taking the atomization performance of nozzle into consideration,the pressure-swirl nozzle with 4 tangential inlets and 10◦deflection angle should be selected.展开更多
Polyether-ether-ketone (PEEK) and polyimide (PI) are two kinds of engineering polymer materials widely used as roller bearing cages and rings under extreme environment because of their noise reduction and corrosion re...Polyether-ether-ketone (PEEK) and polyimide (PI) are two kinds of engineering polymer materials widely used as roller bearing cages and rings under extreme environment because of their noise reduction and corrosion resistance properties.The Si3N4 ceramic is the most common ball bearing material.Many current engineering applications of ball bearings require aqueous lubrication.Therefore,this study presents the aqueous lubrication of tribopairs formed by PEEK and PI material sliding against Si3N4 ceramic.Experimental results show that two tribopairs exhibited the similar tribological properties under the dry condition.Water as a lubricant for the PI-Si3N4 tribopair pairs effectively reduces both friction coefficients by 35.5% and wear rates by 32%.The water absorption of PI induces better tribological properties by changing the tribopair surface properties.In addition,the dimples appearing on the PI tribopair surface under water generate additional hydrodynamic lubrication and further improve the friction properties of surface.The PEEK-Si3N4 tribopair shows similar friction coefficients under two kinds of environments.The wear rates under water are approximately more than two times of that under dry sliding.However,water inhibits the appearance of the crush phenomenon and enhances the carrying capacity of the tribopair.Energy dispersive spectroscopy and X-ray diffraction spectra demonstrate no chemical corrosion.The 3D profiler and SEM morphologies illustrate that the transfer film would be formed from the surface of PEEK under water but hindered under dry friction.Overall,the PI-Si3N4 tribopair exhibits better properties than PEEK under water and is promising for future applications in the bearing industry.展开更多
文摘The critical speeds for a vehicle turbocharger with hybrid ceramic ball bearing are researched. The ball bearing-rotor system produces resonance when it working in critical speed and that makes the turbocharger injury working for a long time. The calculation and analysis methods of the critical speed for the vehicle turbocharger are described. The critical speed is computed by two methods including Riccati transfer matrix and DyRoBeS finite element method for a vehicle turbocharger with hybrid ceramic ball bearing. The vibration experiment had been taken to validate the calculating result, Comparison between the results by two calculation methods and the test results show that the first critical speed differences are 6.47 % and 5.66 %, the second critical speed differences are 2.87 % and 2.94 % respectively. And then, the primary factors which influence the critical speed are analyzed, the conclusions will be helpful for the vehicle turbocharger bearing-rotor system design.
基金This project is supported by State Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences,China(No.0303).
文摘An experiment is conducted to investigate the effects of lubricant10#, which contains extreme pressure additives T304 and T305, on the rolling contact fatigue (RCF) life of the contact pairs of a Si3N4 ceramic ball and a steel rod. The experimental investigation is carried out using a ball-rod RCF test rig. The results show that the extreme pressure additives increase the anti-contact-fatigue performance of ceramic balls; When the content of the additives varies from 1% to 5%, the increasing gradient of the RCF life curve decreases; And the oil sample with 1% T305 additive corresponds to the maximal gradient of the RCF life curve, with the RCF life being increased by about 10.77 times. The fatigue surface of the ceramic ball is analyzed with scanning electron microscope (SEM) and X-ray electron dispersion analysis(EDAX), and the physical model of extreme pressure additives' increasing the RCF life of the ceramic ball is proposed. It is found that the extreme pressure additives form a corrosive film and a transfer film on the surface of the ceramic ball, which decrease the surface tangential stress, and to increase the surface energy is the most effective means for increasing the RCF life.
基金This project is supported by National Natural Science Foundation of China(59575063), the Provincial Natural Science Foundation o
文摘In order to realize high speed machining,the special requirements for the transmission and sturctrue of CNC machine tool have to be satisfied.A high speed spindle unit driven by a built-in motor is developed.An oil-water heat exchange system is used for cooling the spindle motor.The spindle is supported by Si_4N_3 ceramic ball angular contact bearings. An oil-air lubricator is used to lubricate and cool the spindle bearings.Some special structures are taken for balancing the spindle.
基金Supported by the National Natural Science Foundation of China (No. 50275031) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars the Ministry of Education China (2002)
文摘To simplify the lubricating system for high-speed bearings and improve its reliability, grease lu-bricated high-speed hybrid ceramic bearings were theoretically and experimentally researched. Bearings with an outer race of 62 mm and eleven 9.525-mm balls were investigated. Traction coefficient and flash temperature between the bearing races and the balls were calculated and the results show that the traction coefficient of Si3N4 hybrid ceramic bearings is 74% that of the steel AISI 440B ones at 30 000 r/min and 1750 N, and the flash temperature of the hybrid bearings is 49% that of steel ones. Simulating the high-speed bearing rotational conditions, the grease lubricated hybrid ceramic ball bearings were tested and the results show that the power consumption of hybrid ceramic bearing lubricated by grease D at 24 000 r/min and axial load 1750 N is 80% that of steel ones.
基金The author would like to thank the National Natural Science Foundation of China(NSFC)for its grant to this research.The number of the fund is 51964022.
文摘In this paper,the atomization characteristics of Si3N4 ceramic dry granulation affect the performance of Si3N4 ceramic bearing balls.In order to improve the dry granulation characteristics and the comprehensive performance of Si3N4 ceramic bearing balls,the atomization mechanism of the spinning nozzle used for Si3N4 dry granulation was studied in detail.The interaction between air and binder in the pressure-swirl nozzle is analyzed based on VOF method,the modified realizable k−εturbulence model is used to simulate the flow field inside and outside the pressure-swirl nozzle,the effects of nozzle inlet parameters including the number of tangential inlets and the deflection angle of tangential inlets on the binder volume fraction,velocity distribution and pressure distribution are analyzed.The results show that when the number of tangential inlets increases from 1 to 4,the swirl strength of gas–liquid two-phase in the nozzle increases,the mean diameter of air core increases from 1.51 mm to 2.01 mm,and the spray cone angle increases from 18.5◦to 26.4◦.Besides,when the deflection angle of tangential inlet increases from 0◦to 15◦,the swirl strength of gas–liquid two-phase in the nozzle with the deflection angle of tangential inlet of 10◦is the largest,and the mean diameter of air core and spray cone angle is 3.04 mm and 30.7◦,respectively.Based on the atomization experiment platform of the electric control fuel system,the mean diameter of air core and spray cone angle are measured,the micromorphology of Si3N4 particles is observed,which verifies the correctness of numerical simulation.When the Si3N4 particles are prepared by dry granulation,taking the atomization performance of nozzle into consideration,the pressure-swirl nozzle with 4 tangential inlets and 10◦deflection angle should be selected.
基金This research was supported by the National Natural Science Foundation of China (Nos.51375333,50975199 and 51205285).Also the author thanks for all the members who have contributed their time and help in this research
文摘Polyether-ether-ketone (PEEK) and polyimide (PI) are two kinds of engineering polymer materials widely used as roller bearing cages and rings under extreme environment because of their noise reduction and corrosion resistance properties.The Si3N4 ceramic is the most common ball bearing material.Many current engineering applications of ball bearings require aqueous lubrication.Therefore,this study presents the aqueous lubrication of tribopairs formed by PEEK and PI material sliding against Si3N4 ceramic.Experimental results show that two tribopairs exhibited the similar tribological properties under the dry condition.Water as a lubricant for the PI-Si3N4 tribopair pairs effectively reduces both friction coefficients by 35.5% and wear rates by 32%.The water absorption of PI induces better tribological properties by changing the tribopair surface properties.In addition,the dimples appearing on the PI tribopair surface under water generate additional hydrodynamic lubrication and further improve the friction properties of surface.The PEEK-Si3N4 tribopair shows similar friction coefficients under two kinds of environments.The wear rates under water are approximately more than two times of that under dry sliding.However,water inhibits the appearance of the crush phenomenon and enhances the carrying capacity of the tribopair.Energy dispersive spectroscopy and X-ray diffraction spectra demonstrate no chemical corrosion.The 3D profiler and SEM morphologies illustrate that the transfer film would be formed from the surface of PEEK under water but hindered under dry friction.Overall,the PI-Si3N4 tribopair exhibits better properties than PEEK under water and is promising for future applications in the bearing industry.